D’Haese, P. F., S. Pallavaram, et al. Clinical accuracy of a customized stereotactic platform for deep brain stimulation after accounting for brain shift. Stereotact. Funct. Neurosurg. 88(2):81–87, 2010.
PubMed
Article
Google Scholar
Deuschl, G., C. Schade-Brittinger, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 355(9):896–908, 2006.
PubMed
Article
CAS
Google Scholar
Goldstein, S. R., and M. Saloman. Mechanical factors in the design of chronic recording intracortical microelectrodes. IEEE Trans. Biomed. Eng. 20(4):260–269, 1973.
PubMed
Article
CAS
Google Scholar
Halpern, C. H., S. F. Danish, et al. Brain shift during deep brain stimulation surgery for Parkinson’s disease. Stereotact. Funct. Neurosurg. 86(1):37–43, 2008.
PubMed
Article
Google Scholar
Hess, A. E., J. R. Capadona, et al. Development of a stimuli-responsive polymer nanocomposite toward biologically optimized, MEMS-based neural probes. J. Micromech. Microeng. 21(1):1–9, 2011.
Google Scholar
Larson, P. S. Deep brain stimulation for psychiatric disorders. Neurotherapeutics 5(1):50–58, 2008.
PubMed
Article
Google Scholar
LeWitt, P. A., A. R. Rezai, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease a double-blind, sham-surgery controlled, randomized trial. Lancet Neurol 10(1):309–319, 2011.
PubMed
Article
CAS
Google Scholar
Miyagi, Y., F. Shima, et al. Brain shift: an error factor during implantation of deep brain stimulation electrodes. J. Neurosurg. 107(5):989–997, 2007.
PubMed
Article
Google Scholar
Papavassiliou, E., G. Rau, et al. Thalamic deep brain stimulation for essential tremor: relation of lead location to outcome. Neurosurgery 54(5):1120–1129, 2004; (discussion 1129-1130).
PubMed
Article
Google Scholar
Petersen, E., E. Holl, et al. Minimizing brain shift in stereotactic functional neurosurgery. Neurosurgery 67(3):213–221, 2010.
Google Scholar
Richardson, M. R., A. P. Kells, et al. Interventional MRI-guided putaminal delivery of AAV2-GDNF for a planned clinical trial in Parkinson’s disease. Am. Soc. Gene Cell Ther 19(1):1048–1057, 2011.
Article
CAS
Google Scholar
Sampson, J. H., G. Archer, et al. Poor drug distribution as a possible explanation for the results of the PRECISE trial. J. Neurosurg. 113(2):301–309, 2010.
PubMed
Article
Google Scholar
Sampson, J. H., M. L. Brady, et al. Intracerebral infusate distribution by convection-enhanced delivery in humans with malignant gliomas: descriptive effects of target anatomy and catheter positioning. Neurosurgery 60(2 Suppl 1):ONS89–ONS98, 2007.
PubMed
Google Scholar
Starr, P. A. Placement of deep brain stimulators into the subthalamic nucleus or Globus pallidus internus: technical approach. Stereotact. Funct. Neurosurg. 79(3–4):118–145, 2002.
PubMed
Article
Google Scholar
Starr, P. A., A. J. Martin, et al. Implantation of deep brain stimulator electrodes using interventional MRI. Neurosurg. Clin. N. Am. 20(2):207–217, 2009.
Article
Google Scholar
Subbaroyan, J., D. C. Martin, et al. A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex. J. Neural Eng. 2(1):103–113, 2005.
PubMed
Article
Google Scholar
Van den Munckhof, P., M. Fiorella Contarino, et al. Postoperative curving and upward displacement of deep brain stimulation electrodes caused by brain shift. Neurosurgery 67(1):49–54, 2010.
PubMed
Article
Google Scholar