Skip to main content

Determination of Critical Parameters in Platelet Margination

Abstract

An investigation of margination dependence on hematocrit, platelet shape, and viscosity ratio of plasma to cytoplasm is presented. Whole blood is modeled as a suspension of deformable red blood cells (RBCs) and rigid platelets in a viscous liquid. The fluid phase is simulated using the lattice-Boltzmann method, the RBC membranes are modeled with a coarse-grained spectrin-link method, and the dynamics of rigid particles are updated using Newton’s equations of motion for axisymmetric shapes. The results emphasize that an increase in hematocrit increases the rate of margination. The viscosity ratio between the interior cytoplasm and suspending fluid can considerably alter the rate of margination. The aspect ratio of surrogate platelet particles influences the rate of margination as well. Spherical particles tend to migrate more quickly than disks. Highly viscous or rigid RBCs slow down margination.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Abbreviations

RBC:

Red blood cell

LB:

Lattice-Boltzmann

SL:

Spectrin link

References

  1. Aarts, P. A. M. M., P. Steendijk, J. J. Sixma, and R. M. Heethaar. Fluid shear as a possible mechanism for platelet diffusivity in flowing blood. J. Biomech. 19(10):799–805, 1986.

    PubMed  Article  CAS  Google Scholar 

  2. Aarts, P. A., S. A. van den Brock, G. W. Prins, G. D. Kuiken, J. J. Sixma, and R. M. Heethaar. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arterioscl. Thrombosis Vasc. Biol. 8:819–824, 1988.

    Article  CAS  Google Scholar 

  3. Aidun, C. K., and J. R. Clausen. Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42:439–472, 2010.

    Article  Google Scholar 

  4. Aidun, C. K., Y. Lu, and E.-J. Ding. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373:287–311, 1998.

    Article  CAS  Google Scholar 

  5. Bark, D. L. The Hemodynamics During Thrombosis and Impact on Thrombus Growth. Atlanta: Biomedical/Mechanical Engineering, Georgia Institute of Technology, 2010.

  6. Brady, J. F. Stokesian dynamics. Annu. Rev. Fluid Mech. 20:111–157, 1988.

    Article  Google Scholar 

  7. Cadroy, Y., T. A. Horbett, and S. R. Hanson. Discrimination between platelet-mediated and coagulation-mediated mechanisms in a model of complex thrombus formation in vivo. J. Lab. Clin. Med. 113(4):436–448, 1989.

    PubMed  CAS  Google Scholar 

  8. Chen, S., and G. D. Doolen. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30:329–364, 1998.

    Article  Google Scholar 

  9. Clausen, J. R. The Effect of Particle Deformation on the Rheology of Noncolloidal Suspensions. Ph.D. Thesis, Georgia Institute of Technology, 2010.

  10. Clausen, J. R., and C. K. Aidun. Galilean invariance in the lattice-Boltzmann method and its effect on the calculation of rheological properties in suspension. Int. J. Multiph. Flow 35:307–311, 2009.

    Article  CAS  Google Scholar 

  11. Clausen, J. R., and C. K. Aidun. Capsule dynamics and rheology in shear flow: particle pressure and normal stress. Phys. Fluids 22(123302):1–11, 2010.

    Google Scholar 

  12. Clausen, J. R., D. A. Reasor, and C. K. Aidun. Parallel performance of a lattice-Boltzmann/finite element cellular blood flow solver on the IBM Blue Gene/P architecture. Comput. Phys. Commun. 181:1013–1020, 2010.

    Article  CAS  Google Scholar 

  13. Clausen, J. R., D. A. Reasor, and C. K. Aidun. The rheology and microstructure of concentrated non-colloidal suspensions of deformable capsules. J. Fluid Mech. 685:202–234, 2011.

    Article  Google Scholar 

  14. Crowl, L., and A. L. Fogelson. Analysis of mechanisms for platelet near-wall excess under arterial blood flow conditions. J. Fluid Mech. 676:348–375, 2011.

    Article  Google Scholar 

  15. Dao, M., J. Li, and S. Suresh. Molecularly based analysis of deformation of spectrin network and human erythrocyte. Mater. Sci. Eng. C 26:1232–1244, 2006.

    Article  CAS  Google Scholar 

  16. Davies, M. J., and A. C. Thomas. Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. New Engl. J. Med. 310: 1137–1140, 1984.

    PubMed  Article  CAS  Google Scholar 

  17. Davies, M. J., and A. C. Thomas. Plaque fissuring–the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br. Heart J. 53(4):363–373, 1985.

    PubMed  Article  CAS  Google Scholar 

  18. Diaz, A., and D. Barthès-Biesel. Entrance of bioartificial capsule in a pore. Comput. Model. Eng. Sci. 3:321–338, 2002.

    Google Scholar 

  19. Ding, E. J., and C. K. Aidun. The dynamics and scaling law for particles suspended in flow with inertia. J. Fluid Mech. 423:317–344, 2000.

    Article  CAS  Google Scholar 

  20. Doddi, S. K., and P. Bagchi. Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys. Rev. E 79:046318, 2009.

    Article  Google Scholar 

  21. Dupin, M. M., I. Halliday, C. M. Care, L. Alboul, and L. L. Munn. Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75:066707, 2007.

    Article  Google Scholar 

  22. Dupin, M. M., I. Halliday, C. M. Care, and L. L. Munn. Efficiency oriented, hybrid approach for modeling deformable particles in three dimensions. Prog. Comput. Fluid Dyn. 8(1–4):109–120, 2008.

    Article  Google Scholar 

  23. Eckstein, E. C., A. W. Tilles, and F. J. Mellero. Conditions for the occurrence of large near-wall excesses of small particles during blood flow. Microvasc. Res. 36:31–39, 1988.

    PubMed  Article  CAS  Google Scholar 

  24. Fedosov, D. A., B. Caswell, and G. E. Karniadakis. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys. J. 98:2215–2225, 2010.

    PubMed  Article  CAS  Google Scholar 

  25. Freund, J. B., and M. M. Orescanin. Cellular flow in a small blood vessel. J. Fluid Mech. 671:466–490, 2011.

    Article  Google Scholar 

  26. Ginzburg, I., and P. Adler. Boundary flow condition analysis for the 3-dimensional lattice Boltzmann Model. J. Phys. II 4:191–214, 1994.

    Article  Google Scholar 

  27. Goldsmith, H., and J. Marlow. Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells. J. Colloid Interface Sci. 7(2):383–407, 1979.

    Article  Google Scholar 

  28. Haga, J., A. Beaudoin, J. White, and J. Stony. Quantification of the passive mechanical properties of the resting platelet. Ann. Biomed. Eng. 26:268–277, 1998.

    PubMed  Article  CAS  Google Scholar 

  29. Jackson, S. P. The growing complexity of platelet aggregation. Blood 109(12):5087–5095, 2007.

    PubMed  Article  CAS  Google Scholar 

  30. Junk, M., and W.-A. Jong. Rigorous Navier–Stokes limit of the lattice Boltzmann equation. Asympt. Anal. 35(2):165–185, 2003.

    Google Scholar 

  31. Junk, M., A. Klar, and L.-S. Luo. Asymptotic analysis of the lattice Boltzmann equation. J. Comput. Phys. 210(2):676–704, 2005.

    Article  Google Scholar 

  32. Kumar, A., and M. D. Graham. Segregation by membrane rigidity in flowing binary suspensions of elastic capsules. Phys. Rev. E 84:066316, 2011.

    Article  Google Scholar 

  33. Liu, Y., and W. K. Liu. Rheology of red blood cell aggregation by computer simulation. J. Comput. Phys. 220:139–154, 2006.

    Article  Google Scholar 

  34. MacMeccan, R. M., J. R. Clausen, G. P. Neitzel, and C. K. Aidun. Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method. J. Fluid Mech. 618:13–39, 2009.

    Article  Google Scholar 

  35. Maxwell, M. J., E. Westein, W. S. Nesbitt, S. Giuliano, S. M. Dopheide, and S. P. Jackson. Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood 109:566–576, 2007.

    PubMed  Article  CAS  Google Scholar 

  36. McEver, R. P., and C. Zhu. Rolling cell adhesion. Annu. Rev. Cell Dev. Biol. 26:363–396, 2010.

    PubMed  Article  CAS  Google Scholar 

  37. McWhirter, J. L., H. Noguchi, and G. Gompper. Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. PNAS 106(15):6039–6043, 2009.

    PubMed  Article  CAS  Google Scholar 

  38. Mody, N., and M. R. King. Platelet adhesive dynamics. Part I. Characterization of platelet hydrodynamic collisions and wall effects. Biophys. J. 95(5):2539–2555, 2008.

    PubMed  Article  CAS  Google Scholar 

  39. Nijhof, E. J., W. S. J. Uijttewal, and R. M. Heethaar. A Laser-Doppler system for measuring distributions of blood particles in narrow flow channels. IEEE Trans. Instrum. Meas. 43(3):430–435, 1994.

    Article  Google Scholar 

  40. Noble, D. R., S. Chen, J. G. Georgiadis, and R. O. Buckius. A consistent hydrodynamic boundary condition for the lattice Boltzmann method. Phys. Fluids 7:203–209, 1995.

    Article  CAS  Google Scholar 

  41. Pivkin, I. V., and G. E. Karniadakis. Accurate coarse-grained modeling of red blood cells. Phys. Rev. Lett. 101:118105, 2008.

    PubMed  Article  Google Scholar 

  42. Pozrikidis, C. Numerical simulation of the flow-induced deformation of red blood cells. Ann. Biomed. Eng. 31:1194–1205, 2003.

    PubMed  Article  CAS  Google Scholar 

  43. Pozrikidis, C. Axisymmetric motion of a file of red blood cells through capillaries. Phys. Fluids 17(031503):1–14, 2005.

    Google Scholar 

  44. Pozrikidis, C. Flipping of an adherent blood platelet over a substrate. J. Fluid Mech. 568:161–172, 2006.

    Article  Google Scholar 

  45. Reasor, D. A., J. R. Clausen, and C. K. Aidun. Coupling the lattice-Boltzmann and spectrin-link methods for the direct numerical simulation of cellular blood flow. Int. J. Numer. Methods Fluids 68:767–781, 2012.

    Article  Google Scholar 

  46. Segré, G., and A. Silberberg. Behavior of macroscopic rigid spheres in Poiseuille flow: Part 2. Experimental results and interpretation. J. Fluid Mech. 14(2):284–304, 1962.

    Article  Google Scholar 

  47. Tilles, A. W., and E. C. Eckstein. The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate. Microvasc. Res. 33:218–223, 1987.

    Article  Google Scholar 

  48. Tokarev, A. A., A. A. Butylin, and F. I. Ataullakhanov. Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophys. J. 100(4):799–808, 2011.

    PubMed  Article  CAS  Google Scholar 

  49. Tsubota, K., and S. Wada. Elastic force of red blood cell membrane during tank-treading motion: consideration of the membrane’s natural state. Int. J. Mech. Sci. 52:356–364, 2010.

    Article  Google Scholar 

  50. Turitto, V. T., and H. R. Baumgartner. Platelet deposition on subendothelium exposed to flowing blood: mathematical analysis of physical parameters. Trans. Am. Soc. Artif. Intern. Org. 21:593–601, 1975.

    CAS  Google Scholar 

  51. Turitto, V. T., A. M. Benis, and L. F. Leonard. Platelet diffusion in flowing blood. Ind. Eng. Chem. Fundam. 11(2):216–223, 1972.

    Article  CAS  Google Scholar 

  52. Uijttewaal, W. S. J., E. J. Nijhof, and R. M. Heethaar. Lateral migration of blood cells and microspheres in two-dimensional Poiseuille flow: a Laser-Doppler study. J. Biomech. 27(1):35–42, 1994.

    PubMed  Article  CAS  Google Scholar 

  53. Womersley, J. R. Oscillatory Flow in Arteries: The Constrained Elastic Tube as a Model of Arterial Flow and Pulse Transmission. Technical Report, Aeronautical Research Laboratory, Wright Air Development Center, Dayton, OH, 1955.

  54. Wu, J., and C. K. Aidun. Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force. Int. J. Numer. Methods Fluids 62(7):765–783, 2009.

    Google Scholar 

  55. Yazdani, A. Z. K., and P. Bagchi. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow. Phys. Rev. E 84:026314, 2011.

    Article  Google Scholar 

  56. Zhang, J., P. C. Johnson, and A. S. Popel. An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys. Biol. 4:285–295, 2007.

    PubMed  Article  CAS  Google Scholar 

  57. Zhao, H., A. H. G. Isfahani, L. N. Olson, and J. B. Freund. A spectral boundary integral method for flowing blood cells. J. Comput. Phys. 229:3726–3744, 2010.

    Article  CAS  Google Scholar 

  58. Zhao, R., M. V. Kameneva, and J. F. Antaki. Investigation of platelet margination phenomena at elevated shear stress. Biorheology 44:161–177, 2007.

    PubMed  Google Scholar 

  59. Zhao, H., and E. S. G. Shaqfeh. Shear-induced platelet margination in a microchannel. Phys. Rev. E 83(061924):1–6, 2011.

    Google Scholar 

  60. Ziegler, D. P. Boundary conditions for lattice Boltzmann simulations. J. Stat. Phys. 71:1171–1177, 1993.

    Article  Google Scholar 

  61. Zydney, A. L., and C. K. Colton. Augmented solute transport in the shear flow of a concentrated suspension. Physicochem. Hydrodyn. 10(1):77–96, 1988.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Science Foundation for use of the TeraGrid under grant number TG-CTS100012 and the Texas Advanced Computing Center for the use of Ranger. D.R. was funded by the United States Department of Defense through the ASEE SMART fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrus K. Aidun.

Additional information

Associate Editor Konstantinos Konstantopoulos oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reasor, D.A., Mehrabadi, M., Ku, D.N. et al. Determination of Critical Parameters in Platelet Margination. Ann Biomed Eng 41, 238–249 (2013). https://doi.org/10.1007/s10439-012-0648-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0648-7

Keywords

  • Lattice-Boltzmann
  • Spectrin link
  • Red blood cell