Skip to main content

A Musculoskeletal Modeling Approach for Estimating Anterior Cruciate Ligament Strains and Knee Anterior–Posterior Shear Forces in Stop-Jumps Performed by Young Recreational Female Athletes

Abstract

The central goal of this study was to contribute to the advancements being made in determining the underlying causes of anterior cruciate ligament (ACL) injuries. ACL injuries are frequently incurred by recreational and professional young female athletes during non-contact impact activities in sports like volleyball and basketball. This musculoskeletal-neuromuscular study investigated stop-jumps and factors related to ACL injury like knee valgus and internal–external moment loads, knee anterior–posterior (AP) shear forces, ACL strains and internal forces. Motion capture data was obtained from the landing phase of stop-jumps performed by eleven young recreational female athletes and electromyography (EMG) data collected from quadriceps, hamstring and gastrocnimius muscles which were then compared to numerically estimated activations. Numerical simulation tools used were Inverse Kinematics, Computed Muscle Control and Forward Dynamics and the knee modeled as a six degree of freedom joint. Results showed averaged peak strains of 12.2 ± 4.1% in the right and 11.9 ± 3.0% in the left ACL. Averaged peak knee AP shear forces were 482.3 ± 65.7 N for the right and 430.0 ± 52.4 N for the left knees, approximately equal to 0.7–0.8 times body weight across both knees. A lack of symmetry was observed between the knees for valgus angles (p < 0.04), valgus moments (p < 0.001) and muscle activations (p < 0.001), all of which can be detrimental to ACL stability during impact activities. Comparisons between recorded EMG data and estimated muscle activations show the relation between electrical signal and muscle depolarization. In summary, this study outlines a musculoskeletal simulation approach that provides numerical estimations for a number of variables associated with ACL injuries in female athletes performing stop-jumps.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Anderson, F. C., and M. G. Pandy. A dynamic optimization solution for vertical jumping in three dimensions. Comput. Methods Biomech. Biomed. Eng. 2:201–231, 1999.

    Article  Google Scholar 

  2. Arnold, E., S. Ward, R. Lieber, and S. Delp. A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 38:269–279, 2010.

    PubMed  Article  Google Scholar 

  3. Burden, A. How should we normalize electromyograms obtained from healthy participants? What we have learned from over 25 years of research. J. Electromyogr. Kinesiol. 20(6):1023–1035, 2010.

    PubMed  Article  Google Scholar 

  4. Chapman, A. R., B. Vicenzino, P. Blanch, J. J. Knox, and P. W. Hodges. Intramuscular fine-wire electromyography during cycling: repeatability, normalisation and a comparison to surface electromyography. J. Electromyogr. Kinesiol. 20:108–17, 2010.

    Google Scholar 

  5. Chappell, J. D., B. Yu, D. T. Kirkendall, and W. E. Garrett. A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. Am. J. Sports Med. 30(2):261–267, 2002.

    PubMed  Google Scholar 

  6. Cohen, S. B., C. VanBeek, J. S. Starman, D. Armfield, J. J. Irrgang, and F. H. Fu. MRI measurement of the two bundles of the normal anterior cruciate ligament. Orthopedics 32(9). doi:10.3928/01477447-20090728-35, 2009.

  7. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, and C. T. John. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.

    PubMed  Article  Google Scholar 

  8. Ebben, W. P., M. L. Fauth, E. J. Petushek, L. R. Garceau, B. E. Hsu, B. N. Lutsch, and C. R. Feldmann. Gender-based analysis of hamstring and quadriceps muscle activation during jump landings and cutting. J. Strength Cond. Res. 24(2):408–415, 2010.

    Google Scholar 

  9. Ford, K. R., G. D. Myer, and T. E. Hewett. Valgus knee motion during landing in high school female and male basketball players. Med. Sci. Sports Exerc. 35:1745–1750, 2003.

    PubMed  Article  Google Scholar 

  10. Freeman, M. A., and V. Pinskerova. The movement of the normal tibiofemoral joint. J. Biomech. 38(2):197–208, 2005.

    PubMed  Article  CAS  Google Scholar 

  11. Fukuda, Y., S. L. Woo, and J. C. Loh. A quantitative analysis of valgus torque on the ACL: a human cadaveric study. J. Orthop. Res. 21:1107–1112, 2003.

    PubMed  Article  Google Scholar 

  12. Herzog, W. History dependence of force production in skeletal muscle: a proposal for mechanisms. J. Electromyogr. Kinesiol. 8:111–117, 1998.

    PubMed  Article  CAS  Google Scholar 

  13. Hewett, T. E., G. D. Myer, and K. R. Ford. Puberty decreases dynamic knee stability in female athletes: a potential mechanism for increased ACL injury risk. J. Bone Joint Surg. Am. 86:1601–1608, 2004.

    PubMed  Google Scholar 

  14. Hewett, T. E., G. D. Myer, K. R. Ford, S. Robert, R. S. Heidt, Jr., A. J. Colosimo, and S. G. McLean. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am. J. Sports Med. 34(3):445–455, 2006.

    PubMed  Google Scholar 

  15. Hewett, T. E., M. V. Paterno, and G. D. Myer. Strategies for enhancing proprioception and neuromuscular control of the knee. Clin. Orthop. 402:76–94, 2002.

    PubMed  Article  Google Scholar 

  16. Hewett, T. E., B. T. Zazulak, G. D. Myer, and K. R. Ford. A review of electromyographic activation levels, timing differences, and increased anterior cruciate ligament injury incidence in female athletes. Br. J. Sports Med. 39:347–350, 2005.

    PubMed  Article  CAS  Google Scholar 

  17. Hill, A. V. The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. Ser. B Biol. Sci. 126(843):136–195, 1938.

  18. Hosokawa, T., K. Sato, S. Mitsueda, H. Umehara, K. Hidume, T. Okada, I. Kanisawa, A. Tsuchiya, K. Takahashi, and H. Sakai. Effects of anterior cruciate ligament injury prevention program on lower extremity alignment, isokinetic muscle strength and electromyographic activity. Proceedings of IOC World Conference on Prevention of Injury & Illness. Sport. Br. J. Sports Med. 45(4):353–360, 2011.

  19. Joseph, M., D. Tiberio, J. L. Baird, T. H. Trojian, J. M. Anderson, W. J. Kraemer, and C. Marsh. Knee valgus during drop jumps in national collegiate athletic association division I female athletes: the effects of a medial post. Am. J. Sports Med. 36:285–289, 2008.

    PubMed  Article  Google Scholar 

  20. Kanamori, A., S. L. Woo, and C. B. Ma. The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: a human cadaveric study using robotic technology. Arthroscopy 16:633–639, 2000.

    PubMed  Article  CAS  Google Scholar 

  21. Kar, J., and P. M. Quesada. A numerical simulation approach to studying anterior cruciate ligament strains and internal forces among young recreational women performing valgus inducing stop-jump activities. Ann. Biomed. Eng. 40(8):1679–1691, 2012

    Google Scholar 

  22. Kernozek, T. W., and R. J. Ragan. Estimation of anterior cruciate ligament tension from inverse dynamics data and electromyography in females during drop landing. Clin. Biomech. 23:279–286, 2008.

    Article  Google Scholar 

  23. Koehle, M. J., and M. L. Hull. A method of calculating physiologically relevant joint reaction forces during forward dynamic simulations of movement from an existing knee model. J. Biomech. 41:1143–1146, 2008.

    PubMed  Article  Google Scholar 

  24. Krosshaug, T., J. R. Slauterbeck, L. Engebretsen, and R. Bahr. Biomechanical analysis of anterior cruciate ligament injury mechanisms: three-dimensional motion reconstruction from video sequences. Scand. J. Med. Sci. Sports 17(5):508–519, 2007.

    PubMed  Article  CAS  Google Scholar 

  25. Kuo, A. D. A least-squares estimation approach to improving the precision of inverse dynamics computations. J. Biomech. Eng. 120:148–159, 1998.

    PubMed  Article  CAS  Google Scholar 

  26. Landry, S. C., K. A. McKean, C. A. Hubley-Kozey, W. D. Stanish, and K. J. Deluzio. Neuromuscular and lower limb biomechanical differences exist between male and female elite adolescent soccer players during an unanticipated run and crosscut maneuver. Am. J. Sports Med. 35(11):1901–1911, 2007.

    PubMed  Article  Google Scholar 

  27. Laughlin, W. A., J. T. Weinhandl, T. W. Kernozek, S. C. Cobb, K. G. Keenan, and K. M. O’Connor. The effects of single-leg landing technique on ACL loading. J. Biomech. 44:1845–1851, 2011.

    Google Scholar 

  28. Lloyd, D. G., and T. F. Besier. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 36:765–776, 2003.

    PubMed  Article  Google Scholar 

  29. Lloyd, D. G., and T. S. Buchanan. Strategies of muscular support of varus and valgus isometric loads at the human knee. J. Biomech. 34:1257–1267, 2001.

    PubMed  Article  CAS  Google Scholar 

  30. McLean, S. G., X. Huang, A. Su, and A. J. van den Bogert. Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clin. Biomech. 19:828–838, 2004.

    Article  Google Scholar 

  31. Myer, G. D., K. R. Ford, and T. E. Hewett. Rationale and clinical techniques for anterior cruciate ligament injury: prevention among female athletes. J Athl. Train. 39(4):352–364, 2004.

    PubMed  Google Scholar 

  32. Myer, G. D., K. R. Ford, and T. E. Hewett. New method to identify athletes at high risk of ACL injury using clinic-based measurements and freeware computer analysis. Br. J. Sports Med. 45:238–244, 2011.

    PubMed  Article  Google Scholar 

  33. Nagano, Y., H. Ida, M. Akai, and T. Fukuayabashi. Gender differences in knee kinematics and muscle activity during single knee drop landing. Knee 14:218–223, 2007.

    PubMed  Article  Google Scholar 

  34. Noyes, F. R. Functional properties of knee ligaments and alterations induced by knee immobilization. Clin. Orthop. Rel. Res. 123:210–242, 1977.

    Google Scholar 

  35. Noyes, F. R., S. D. Barber-Westin, C. Fleckenstein, C. Walsh, and J. West. The drop jump screening test: difference in lower limb control by gender and effect of neuromuscular training in female athletes. Am. J. Sports Med. 33(2):197–207, 2005.

    PubMed  Article  Google Scholar 

  36. Olsen, O. E., G. Myklebust, L. Engebretsen, and B. Roald. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am. J. Sports Med. 32(4):1002–1012, 2004.

    PubMed  Article  Google Scholar 

  37. Palmieri-Smith, R. M., E. M. Wojtys, and J. A. Ashton-Miller. Association between preparatory muscle activation and peak valgus knee angle. J. Electromyogr. Kinesiol. 18(6):973–979, 2008.

    PubMed  Article  Google Scholar 

  38. Pflum, M. A., K. B. Shelburne, M. R. Torry, M. J. Decker, and M. G. Pandy. Model prediction of anterior cruciate ligament force during drop-landing. Med. Sci. Sport Exer. 36(11):1949–1948, 2004.

    Google Scholar 

  39. Quatman, C. J., and T. E. Hewett. The anterior cruciate ligament injury controversy: is “valgus collapse” a sex-specific mechanism? Br. J. Sports Med. 43:328–335, 2009.

    PubMed  Article  CAS  Google Scholar 

  40. Rouffet, D. M., and C. A. Hautier. EMG normalization to study muscle activation in cycling. J. Electromyogr. Kinesiol. 18:866–878, 2008.

    PubMed  Article  Google Scholar 

  41. Sasaki, K., and R. R. Neptune. Individual muscle contributions to the axial knee joint contact force during normal walking. J. Biomech. 43(14):2780–2784, 2010.

    PubMed  Article  Google Scholar 

  42. Seth, A., M. A. Sherman, J. A. Reinbolt, and S. L. Delp. OpenSim: a musculoskeletal modeling and simulation for in silico investigation and exchange. Procedia IUTAM 2:212–232, 2011.

    Article  Google Scholar 

  43. Shelburne, K. B., M. R. Torry, and M. G. Pandy. Muscle, ligament, and joint-contact forces at the knee during walking. Med. Sci. Sports Exerc. 37(11):1948–1956, 2005.

    PubMed  Article  Google Scholar 

  44. Shimokochi, Y., and S. J. Shultz. Mechanisms of noncontact anterior cruciate ligament injury. J. Athl. Tr. 43(4):396–408, 2008.

    Article  Google Scholar 

  45. Shin, C. S., A. M. Chaudhari, and T. P. Andriacchi. The effect of isolated valgus moments on ACL strain during single-leg landing: a simulation study. J. Biomech. 42(3):280–285, 2009.

    PubMed  Article  Google Scholar 

  46. Shin, C. S., A. M. Chaudhari, and T. P. Andriacchi. Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone. Med. Sci. Sport Exer. 43(8):1484–1491, 2011.

    Article  Google Scholar 

  47. Spagele, T., A. Kistner, and A. Gollhofer. Modelling, simulation and optimisation of a human vertical jump. J. Biomech. 32:521–530, 1999.

    Google Scholar 

  48. Thelen, D. G., and F. C. Anderson. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J. Biomech. 39:1107–1115, 2006.

    PubMed  Article  Google Scholar 

  49. Thelen, D. G., S. L. Delp, and F. C. Anderson. Generating dynamic simulations of movement using computed muscle control. J. Biomech. 36:321–328, 2003.

    PubMed  Article  Google Scholar 

  50. Woo, S. L., R. E. Debski, J. D. Withrow, and M. A. Janaushek. Tensile properties of the human femur-anterior cruciate ligament–tibia complex. Am. J. Sports Med. 27(4):533–543, 1999.

    PubMed  CAS  Google Scholar 

  51. Yu, B., C. F. Lin, and W. E. Garrett. Lower extremity biomechanics during the landing of a stop-jump task. Clin. Biomech. 21(3):297–305, 2006.

    Article  Google Scholar 

  52. Zajac, F. E., and M. E. Gordon. Determining muscle’s force and action in multi-articular movement. Exrer. Sport Sci. Rev. 17(1):187–230, 1989.

    CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to the Department of Mechanical Engineering, University of Louisville, Louisville, KY for funding the stop-jump laboratory trials. We express our special thanks to Dr A. Swank, Department of Sports Physiology, University of Louisville, Louisville, KY for helping recruit young female participants for the stop-jump trials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Kar.

Additional information

Associate Editor Catherine Disselhorst-Klug oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 13916 kb)

Supplementary material 2 (TIFF 6606 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kar, J., Quesada, P.M. A Musculoskeletal Modeling Approach for Estimating Anterior Cruciate Ligament Strains and Knee Anterior–Posterior Shear Forces in Stop-Jumps Performed by Young Recreational Female Athletes. Ann Biomed Eng 41, 338–348 (2013). https://doi.org/10.1007/s10439-012-0644-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0644-y

Keywords

  • Anterior cruciate ligament
  • Musculoskeletal simulation
  • Electromyography
  • Computed muscle control
  • Inverse kinematics
  • Forward dynamics