Skip to main content

Energy Harvesting from the Beating Heart by a Mass Imbalance Oscillation Generator


Energy-harvesting devices attract wide interest as power supplies of today’s medical implants. Their long lifetime will spare patients from repeated surgical interventions. They also offer the opportunity to further miniaturize existing implants such as pacemakers, defibrillators or recorders of bio signals. A mass imbalance oscillation generator, which consists of a clockwork from a commercially available automatic wrist watch, was used as energy harvesting device to convert the kinetic energy from the cardiac wall motion to electrical energy. An MRI-based motion analysis of the left ventricle revealed basal regions to be energetically most favorable for the rotating unbalance of our harvester. A mathematical model was developed as a tool for optimizing the device’s configuration. The model was validated by an in vitro experiment where an arm robot accelerated the harvesting device by reproducing the cardiac motion. Furthermore, in an in vivo experiment, the device was affixed onto a sheep heart for 1 h. The generated power in both experiments—in vitro (30 μW) and in vivo (16.7 μW)—is sufficient to power modern pacemakers.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8


  1. Amin Karami, M., and D. J. Inman. Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100:042901–042901-4, 2012.

    Article  Google Scholar 

  2. Clark, N., N. Reichek, P. Bergey, E. Hoffman, D. Brownson, L. Palmon, and L. Axel. Circumferential myocardial shortening in the normal human left ventricle. Assessment by magnetic resonance imaging using spatial modulation of magnetization. Circulation 84:67–74, 1991.

    PubMed  Article  CAS  Google Scholar 

  3. Dankert, J., and H. Dankert. Technische Mechanik: Statik, Festigkeitslehre, Kinematik/Kinetik. Stuttgart: Teubner, 776 pp, 2009.

  4. Fischer, S. E., G. C. McKinnon, S. E. Maier, and P. Boesiger. Improved myocardial tagging contrast. Magn. Reson. Med. 30:191–200, 1993.

    PubMed  Article  CAS  Google Scholar 

  5. Geigy Scientific Tables, Vol. 5: Heart and Circulation. West Caldwell, NJ: Ciba Pharmaceutical Co, 1991, 278 pp.

  6. Goto, H., T. Sugiura, Y. Harada, and T. Kazui. Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source. Med. Biol. Eng. Comput. 37:377–380, 1999.

    PubMed  Article  CAS  Google Scholar 

  7. Kerzenmacher, S., J. Ducrée, R. Zengerle, and F. von Stetten. Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J. Power Sources 182:1–17, 2008.

    Article  CAS  Google Scholar 

  8. Kleemann, T., T. Becker, K. Doenges, M. Vater, J. Senges, S. Schneider, W. Saggau, U. Weisse, and K. Seidl. Annual rate of transvenous defibrillation lead defects in implantable cardioverter-defibrillators over a period of >10 years. Circulation 115:2474–2480, 2007.

    PubMed  Article  Google Scholar 

  9. Leland, E. S., and P. K. Wright. Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Mater. Struct. 15:1413–1420, 2006.

    Article  Google Scholar 

  10. Mateu, L., and F. Moll. Review of energy harvesting techniques and applications for microelectronics. Proc. SPIE 5837:359–373, 2005.

    Article  Google Scholar 

  11. Osman, N. F., E. R. McVeigh, and J. L. Prince. Imaging heart motion using harmonic phase MRI. IEEE Trans. Med. Imaging 19:186–202, 2000.

    PubMed  Article  CAS  Google Scholar 

  12. Paradiso, J. A., and T. Starner. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput. 4:18–27, 2005.

    Article  Google Scholar 

  13. Platt, S. R., S. Farritor, K. Garvin, and H. Haider. The use of piezoelectric ceramics for electric power generation within orthopedic implants. IEEE/ASME Trans. Mechatron. 10:455–461, 2005.

    Article  Google Scholar 

  14. Qin, Y., X. Wang, and Z. L. Wang. Microfibre-nanowire hybrid structure for energy scavenging. Nature 451:809–813, 2008.

    PubMed  Article  CAS  Google Scholar 

  15. Reymondin, C.-A. Theorie der Uhrmacherei. Lausanne: CADEV, 2001.

    Google Scholar 

  16. Romero, E., R. O. Warrington, and M. R. Neuman. Energy scavenging sources for biomedical sensors. Physiol. Meas. 30:R35–R62, 2009.

    PubMed  Article  CAS  Google Scholar 

  17. Rutz, A. K., R. Manka, S. Kozerke, S. Roas, P. Boesiger, and J. Schwitter. Left ventricular dyssynchrony in patients with left bundle branch block and patients after myocardial infarction: integration of mechanics and viability by cardiac magnetic resonance. Eur. Heart J. 30:2117–2127, 2009.

    PubMed  Article  Google Scholar 

  18. Rutz, A. K., S. Ryf, S. Plein, P. Boesiger, and S. Kozerke. Accelerated whole-heart 3D CSPAMM for myocardial motion quantification. Magn. Reson. Med. 59:755–763, 2008.

    PubMed  Article  Google Scholar 

  19. Ryf, S., J. Tsao, J. Schwitter, A. Stuessi, and P. Boesiger. Peak-combination HARP: a method to correct for phase errors in HARP. JMRI-J. Magn. Reson. Imaging 20:874–880, 2004.

    Article  Google Scholar 

  20. Schauvliege, S., K. Narine, S. Bouchez, D. Desmet, V. Van Parys, G. Van Nooten, and F. Gasthuys. Refined anaesthesia for implantation of engineered experimental aortic valves in the pulmonary artery using a right heart bypass in sheep. Lab. Anim. 40:341–352, 2006.

    PubMed  Article  CAS  Google Scholar 

  21. Stuber, M., S. Fischer, M. Scheidegger, and P. Boesiger. Slice Following in Cardiac Imaging with Optimized RF Pulse Angles, New York, 1993.

  22. Tashiro, R., N. Kabei, K. Katayama, E. Tsuboi, and K. Tsuchiya. Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J. Artif. Organs 5:239–245, 2002.

    Article  Google Scholar 

  23. Thanassoulis, G., J. M. Massaro, U. Hoffmann, A. A. Mahabadi, R. S. Vasan, C. J. O’Donnell, and C. S. Fox. Prevalence, distribution, and risk factor correlates of high pericardial and intrathoracic fat depots in the Framingham heart study. Circ. Cardiovasc. Imaging 3:559–566, 2010.

    PubMed  Article  Google Scholar 

  24. Wang, Z., V. Leonov, P. Fiorini, and C. Van Hoof. Realization of a wearable miniaturized thermoelectric generator for human body applications. Sens. Actuators A 156:95–102, 2009.

    Article  Google Scholar 

  25. Wischke, M., M. Masur, F. Goldschmidtboeing, and P. Woias. Piezoelectrically tunable electromagnetic vibration harvester, 2010. doi:10.1109/MEMSYS.2010.5442427.

  26. Wong, L. S., S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas, and H. Naas. A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE J. Solid-State Circuits 39:2446–2456, 2004.

    Article  Google Scholar 

Download references


The authors would like to thank the School of Life Sciences at the University of Applied Sciences Northwestern Switzerland and the Bern University Hospital for facilitating the in vitro and in vivo experiment, respectively. The research was supported by the Department of Cardiology at the Bern University Hospital and the Commission for Technology and Innovation (KTI-CTI 12589.1 PFLS-LS).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Rolf Vogel.

Additional information

Associate Editor Xiaoxiang Zheng oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zurbuchen, A., Pfenniger, A., Stahel, A. et al. Energy Harvesting from the Beating Heart by a Mass Imbalance Oscillation Generator. Ann Biomed Eng 41, 131–141 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Scavenging
  • Automatic power-generating system
  • Power supplies
  • Cardiac wall motion
  • MRI
  • Unbalance
  • Wrist watch