Skip to main content
Log in

Elastic and Viscoelastic Characterization of Mouse Oocytes Using Micropipette Indentation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper reports the first quantitative comparison study of elastic and viscoelastic properties of oocytes from young and aged mice. A force measurement technique, including a poly(dimethylsiloxane) (PDMS) cell holding device and a sub-pixel computer vision tracking algorithm, is utilized for measuring forces applied to an oocyte and resultant cell deformations in real time during oocyte manipulation. To characterize elastic and viscoelastic properties of the oocytes, a stress-relaxation indentation test is performed. A two-step, large-deformation mechanical model is developed to extract the mechanical properties of the oocytes from the measured force–deformation data. The experimental results demonstrate that the aged oocytes are significantly softer (instantaneous modulus: 2.2 vs. 5.2 kPa in young oocytes) but more viscous (relaxation time: 4.1 vs. 2.3 s in young oocytes) than the young oocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bausch, A. R., F. Ziemann, A. A. Boulbitch, K. Jacobson, and E. Sackmann. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys. J. 75:2038–2049, 1998.

    Article  PubMed  CAS  Google Scholar 

  2. Charras, G. T., P. P. Lehenkari, and M. A. Horton. Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. Ultramicroscopy 86:85–95, 2001.

    Article  PubMed  CAS  Google Scholar 

  3. Dai, J. W., and M. P. Sheetz. Mechanical-properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophys. J. 68:988–996, 1995.

    Article  PubMed  CAS  Google Scholar 

  4. Darling, E. M., S. Zauscher, and F. Guilak. Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthr. Cartil. 14:571–579, 2006.

    Article  PubMed  CAS  Google Scholar 

  5. Donoso, P., C. Staessen, B. C. J. M. Fauser, and P. Devroey. Current value of preimplantation genetic aneuploidy screening in IVF. Hum. Reprod. Update 13:15–25, 2007.

    Article  PubMed  CAS  Google Scholar 

  6. Hamatani, T., G. Falco, H. Akutsu, C. A. Stagg, A. A. Sharov, D. B. Dudekula, V. VanBuren, and M. S. H. Ko. Age-associated alteration of gene expression patterns in mouse oocytes. Hum. Mol. Genet. 13:2263–2278, 2004.

    Article  PubMed  CAS  Google Scholar 

  7. Jain, J. K., and R. J. Paulson. Oocyte cryopreservation. Fertil. Steril. 86:1037–1046, 2006.

    Article  PubMed  CAS  Google Scholar 

  8. Khalilian, M., M. Navidbakhsh, M. R. Valojerdi, M. Chizari, and P. E. Yazdi. Estimating young’s modulus of zona pellucida by micropipette aspiration in combination with theoretical models of ovum. J. R. Soc. Interface 7:687–694, 2010.

    Article  PubMed  Google Scholar 

  9. Kim, K. Y., X. Y. Liu, Y. Zhang, J. Cheng, X. Y. Wu, and Y. Sun. Elastic and viscoelastic characterization of microcapsules for drug delivery using a force-feedback MEMS microgripper. Biomed. Microdevices 11:421–427, 2009.

    Article  PubMed  CAS  Google Scholar 

  10. Koay, E. J., A. C. Shieh, and K. A. Athanasiou. Creep indentation of single cells. J. Biomech. Eng. 125:334–341, 2003.

    Article  PubMed  Google Scholar 

  11. Lin, I. K., K. S. Ou, Y. M. Liao, Y. Liu, K. S. Chen, and X. Zhang. Viscoelastic characterization and modeling of polymer transducers for biological applications. J. Microelectromech. Syst. 18:1087–1099, 2009.

    Article  CAS  Google Scholar 

  12. Liu, X. Y., R. Fernandes, A. Jurisicova, R. F. Casper, and Y. Sun. In situ mechanical characterization of mouse oocytes using a cell holding device. Lab Chip 10:2154–2161, 2010.

    Article  PubMed  CAS  Google Scholar 

  13. Liu, X. Y., K. Kim, Y. Zhang, and Y. Sun. Nanonewton force sensing and control in microrobotic cell manipulation. Int. J. Robot. Res. 28:1065–1076, 2009.

    Article  Google Scholar 

  14. Liu, X. Y., J. Shi, Z. Zong, R. Fernandes, R. F. Casper, A. Jurisicova, K. T. Wan, and Y. Sun. Characterizing elastic and viscoelastic properties of young and aged mouse oocytes using a PDMS microdevice. International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp. 467–469, 2011.

  15. Liu, X. Y., Y. Sun, W. H. Wang, and B. Lansdorp. Vision-based cellular force measurement using an elastic microfabricated device. J. Micromech. Microeng. 17:1281, 2007.

    Article  Google Scholar 

  16. Liu, X. Y., Y. F. Wang, and Y. Sun. Cell contour tracking and data synchronization for real-time, high-accuracy micropipette aspiration. IEEE Trans. Autom. Sci. Eng. 6:536–543, 2009.

    Article  Google Scholar 

  17. Mark, J. E. Polymer Data Handbook. Oxford, New York: Oxford University Press, 2009.

    Google Scholar 

  18. Mastenbroek, S., M. Twisk, J. van Echten-Arends, B. Sikkema-Raddatz, J. C. Korevaar, H. R. Verhoeve, N. E. Vogel, E. G. Arts, J. W. de Vries, P. M. Bossuyt, C. H. Buys, M. J. Heineman, S. Repping, and F. van der Veen. In vitro fertilization with preimplantation genetic screening. N. Engl. J. Med. 357:9–17, 2007.

    Article  PubMed  CAS  Google Scholar 

  19. Maugis, D. Contact, Adhesion, and Rupture of Elastic Solids. Berlin; New York: Springer, 2000.

    Google Scholar 

  20. Moon, J. H., C. S. Hyun, S. W. Lee, W. Y. Son, S. H. Yoon, and J. H. Lim. Visualization of the metaphase II meiotic spindle in living human oocytes using the polscope enables the prediction of embryonic developmental competence after icsi. Hum. Reprod. 18:817–820, 2003.

    Article  PubMed  CAS  Google Scholar 

  21. Murayama, Y., M. Yoshida, J. Mizuno, H. Nakamura, S. Inoue, Y. Watanabe, K. Akaishi, H. Inui, C. E. Constantinou, and S. Omata. Elasticity measurement of zona pellucida using a micro tactile sensor to evaluate embryo quality. J. Mamm. Ova Res. 25:8–16, 2008.

    Article  Google Scholar 

  22. Nagy, Z. P., S. Jones-Colon, P. Roos, L. Botros, E. Greco, J. Dasig, and B. Behr. Metabolomic assessment of oocyte viability. Reprod. Biomed. Online 18:219–225, 2009.

    Article  PubMed  Google Scholar 

  23. Navidbakhsh, M., M. Khalilian, M. R. Valojerdi, M. Chizari, and P. E. Yazdi. Alteration in the mechanical properties of human ovum zona pellucida following fertilization: experimental and analytical studies. Exp. Mech. 51:175–182, 2011.

    Article  Google Scholar 

  24. Rienzi, L., F. Ubaldi, M. Iacobelli, M. G. Minasi, S. Romano, and E. Greco. Meiotic spindle visualization in living human oocytes. Reprod. Biomed. Online 10:192–198, 2005.

    Article  PubMed  Google Scholar 

  25. Rienzi, L., F. Ubaldi, M. Iacobelli, S. Romano, M. G. Minasi, S. Ferrero, F. Sapienza, E. Baroni, and E. Greco. Significance of morphological attributes of the early embryo. Reprod. Biomed. Online 10:669–681, 2005.

    Article  PubMed  Google Scholar 

  26. Sato, M., D. P. Theret, L. T. Wheeler, N. Ohshima, and R. M. Nerem. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J. Biomech. Eng. 112:263–268, 1990.

    Article  PubMed  CAS  Google Scholar 

  27. Scott, L., A. Finn, T. O’Leary, S. McLellan, and J. Hill. Morphologic parameters of early cleavage-stage embryos that correlate with fetal development and delivery: prospective and applied data for increased pregnancy rates. Hum. Reprod. 22:230–240, 2007.

    Article  PubMed  CAS  Google Scholar 

  28. Scott, R., E. Seli, K. Miller, D. Sakkas, K. Scott, and D. H. Burns. Noninvasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study. Fertil. Steril. 90:77–83, 2008.

    Article  PubMed  Google Scholar 

  29. Sher, G., L. Keskintepe, M. Keskintepe, M. Ginsburg, G. Maassarani, T. Yakut, V. Baltaci, D. Kotze, and E. Unsal. Oocyte karyotyping by comparative genomic hybridization provides a highly reliable method for selecting “competent” embryos, markedly improving in vitro fertilization outcome: a multiphase study. Fertil. Steril. 87:1033–1040, 2007.

    Article  PubMed  CAS  Google Scholar 

  30. Sun, Y., K. T. Wan, K. P. Roberts, J. C. Bischof, and B. J. Nelson. Mechanical property characterization of mouse zona pellucida. IEEE Trans. Nanobiosci. 2:279–286, 2003.

    Article  Google Scholar 

  31. Theret, D. P., M. J. Levesque, M. Sato, R. M. Nerem, and L. T. Wheeler. The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. J. Biomech. Eng. 110:190–199, 1988.

    Article  PubMed  CAS  Google Scholar 

  32. Ugural, A. C., and S. K. Fenster. Advanced Strength and Applied Elasticity. Upper Saddle River, NJ: Prentice Hall PTR, 2003.

    Google Scholar 

  33. Vergouw, C. G., L. L. Botros, P. Roos, J. W. Lens, R. Schats, P. G. A. Hompes, D. H. Burns, and C. B. Lambalk. Metabolomic profiling by near-infrared spectroscopy as a tool to assess embryo viability: a novel, non-invasive method for embryo selection. Hum. Reprod. 23:1499–1504, 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Roxanne Fernandes, Andrea Jurisicova, and Robert F. Casper from Toronto Mount Sinai Hospital for their assistance on mouse oocyte preparation. XY is supported by the Natural Sciences and Engineering Research Council of Canada and the McGill University. YS is supported by the Natural Sciences and Engineering Research Council of Canada and the Canada Research Chairs Program. JS, ZZ and KTW are supported by the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinyu Liu, Kai-Tak Wan or Yu Sun.

Additional information

Associate Editor Tingrui Pan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Shi, J., Zong, Z. et al. Elastic and Viscoelastic Characterization of Mouse Oocytes Using Micropipette Indentation. Ann Biomed Eng 40, 2122–2130 (2012). https://doi.org/10.1007/s10439-012-0595-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0595-3

Keywords

Navigation