Skip to main content

Estimating Electrical Conductivity Tensors of Biological Tissues Using Microelectrode Arrays

Abstract

Finding the electrical conductivity of tissue is highly important for understanding the tissue’s structure and functioning. However, the inverse problem of inferring spatial conductivity from data is highly ill-posed and computationally intensive. In this paper, we propose a novel method to solve the inverse problem of inferring tissue conductivity from a set of transmembrane potential and stimuli measurements made by microelectrode arrays (MEA). We first formalize the discrete forward model of transmembrane potential propagation, based on a reaction–diffusion model with an anisotropic inhomogeneous electrical conductivity-tensor field. Then, we propose a novel parallel optimization algorithm for solving the complex inverse problem of estimating the electrical conductivity-tensor field. Specifically, we propose a single-step approximation with a parallel block-relaxation optimization routine that simplifies the joint tensor field estimation problem into a set of computationally tractable subproblems, allowing the use of efficient standard optimization tools. Finally, using numerical examples of several electrical conductivity field topologies and noise levels, we analyze the performance of our algorithm, and discuss its application to real measurements obtained from smooth-muscle cardiac tissue, using data collected with a high-resolution MEA system.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Notes

  1. 1.

    To simplify our inference algorithm, for certain dynamic models such as the FitzHugh–Nagumo, we can use the method of variation of parameters in order to have the evolution function dependence on \({\user2{w}}_{0:n}\) brought down to depend only on w 0 and \({\user2{v}}_{0:n}\) (see Supplemental materials Eq. (4)).

  2. 2.

    This parameter can also be viewed, in a game theoretic framework, as quantifying the amount of cooperation or “trust” the players (tensors) have in one another.

  3. 3.

    Minimization is performed using a standard Matlab implementation of the sequential quadratic programming method described in Ref. 28.

References

  1. 1.

    Aja-Fernandez, S., R. de Luis Garcia, D. Tao, and X. Li. Tensors in Image Processing and Computer Vision. London: Springer, 2009.

    Book  Google Scholar 

  2. 2.

    Arsigny, V., P. Fillard, X. Pennec, and N. Ayache. Log-euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56:411–421, 2006.

    PubMed  Article  Google Scholar 

  3. 3.

    Barmpoutis, A., B. C. Vemuri, T. M. Shepherd, and J. R. Forder. Tensor splines for interpolation and approximation of DT-MRI with applications to segmentation of isolated rat hippocampi. IEEE Trans. Med. Imaging 26(11):1537–1546, 2007.

    PubMed  Article  Google Scholar 

  4. 4.

    Batchelor, P. G., M. Moakher, D. Atkinson, F. Calamante, and A. Connelly. A rigorous framework for diffusion tensor calculus. Magn. Reson. Med. 53:221–225, 2005.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Bazhenov, M., P. Lonjers, S. Skorheim, C. Bedard, and A. Destexhe. Non-homogeneous extracellular resistivity affects the current-source density profiles of updown state oscillations. Philos. Trans. R. Soc. 369(1952):3802–3819, 2011.

    Article  Google Scholar 

  6. 6.

    Bédard, C., and A. Destexhe. Generalized theory for current-source-density analysis in brain tissue. Phys. Rev. E 84(4):041909, 2011.

    Google Scholar 

  7. 7.

    Berdondini, L., K. Imfeld, A. Maccione, M. Tedesco, S. Neukom, M. Koudelka-Hep, and S. Martinoia. Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9:2644–2651, 2009.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Bezdek, J. C., and R. J. Hathaway. Convergence of alternating optimization. Neural Parallel Sci. Comput. 11:351–368, 2003. http://dl.acm.org/citation.cfm?id=964885.964886.

    Google Scholar 

  9. 9.

    Bressloff, P. C. Traveling fronts and wave propagation failure in an inhomogeneous neural network. Phys. D 155:83–100, 2001.

    Article  Google Scholar 

  10. 10.

    Castleman, K. R. Diginal Image Processing. Englewood Cliffs: Prentice Hall, 1996.

    Google Scholar 

  11. 11.

    de Leeuw, J., and G. Michailides. Block Relaxation Methods in Statistics. Technical Report, Department of Statistics, University of California at Los Angeles, 1993.

  12. 12.

    Dokos, S., and N. H. Lovell. Parameter estimation in cardiac ionic models. Prog. Biophys. Mol. Biol. 85(2–3):407–431, 2004. Modelling Cellular and Tissue Function. http://www.sciencedirect.com/science/article/pii/S0079610704000306.

    Google Scholar 

  13. 13.

    Graham, L. S., and D. Kilpatrick. Estimation of the bidomain conductivity parameters of cardiac tissue from extracellular potential distributions initiated by point stimulation. Ann. Biomed. Eng. 38(12):3630–3648, 2010.

    PubMed  Article  Google Scholar 

  14. 14.

    Hagmann, P., L. Jonasson, P. Maeder, J. Thiran, V. Wedeen, and R. Meuli. Understanding diffusion MRI imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26:S205–S223, 2006.

    PubMed  Article  Google Scholar 

  15. 15.

    He, Y., and D. Keyes. Reconstructing parameters of the FitzHugh-Nagumo system from boundary potential measurements. J. Comput. Neurosci. 23:251–264, 2007. doi:10.1007/s10827-007-0035-9.

  16. 16.

    Imfeld, K., S. Neukom, A. Maccione, Y. Bornat, S. Martinoia, P. Farine, M. Koudelka-Hep, and L. Berdondini. Large-scale, high-resolution data acquisition system for extracellular recording of electrophysiological activity. IEEE Trans. Biomed. Eng. 55(8):2064 –2073, 2008.

    PubMed  Article  Google Scholar 

  17. 17.

    Julier, S., and J. Uhlmann. Unscented filtering and nonlinear estimation. Proc. IEEE 92(3):401–422, 2004.

    Article  Google Scholar 

  18. 18.

    Kaipio, J., and E. Somersalo. Nonstationary Inverse Problems, chapter 4. In: Statistical and Computational Inverse Problems, Vol. 60, edited by S. Antman, J. Marsden, and L. Sirovich. Berlin: Springer, 2005.

  19. 19.

    La Rosa, P. S., H. Eswaran, H. Preissl, and A. Nehorai. Multiscale forward electromagnetic model of uterine contractions during pregnancy. In revision for BMC Med. Phys.

  20. 20.

    Latash, M. L. Neurophysiological Basis of Movement. Urbana: Human Kinetics Publishers, 2008.

    Google Scholar 

  21. 21.

    Lu, Y., Y. Sato, and S. Amari. Traveling bumps and their collisions in a two-dimensional neural field. Neural Comput. 23(5):1248–60, 2011.

    PubMed  Article  Google Scholar 

  22. 22.

    Mehra, R. K. Optimal input signals for parameter estimation in dynamic systems-survey and new results. IEEE Trans. Autom. Control 19:753–768, 1974.

    Article  Google Scholar 

  23. 23.

    Miller, W., and D. Geselowitz. Simulation studies of the electrocardiogram. I. The normal heart. Circ. Res. 43(2):301–315, 1978.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Miller, W., and C. Henriquez. Finite element analysis of bioelectric phenomena. CRC Crit. Rev. Biomed. Eng. (USA) 18(3):207–233, 1990.

    CAS  Google Scholar 

  25. 25.

    Nelles, O. Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Berlin, New York: Springer, 2001.

    Google Scholar 

  26. 26.

    Nilssen, T., K. Karlsen, T. Mannseth, and X.-C. Tai. Identification of diffusion parameters in a nonlinear convection-diffusion equation using the augmented lagrangian method. Comput. Geosci. 13:317–329, 2009.

    Article  Google Scholar 

  27. 27.

    Nilssen, T. K., and X. C. Tai. Parameter estimation with the augmented Lagrangian method for a parabolic equation. J. Optim. Theory Appl. 124(2):435–453, 2005.

    Article  Google Scholar 

  28. 28.

    Nocedal, J., and S. J. Wright Numerical Optimization. Springer Series in Operations Research. New York: Springer, 2006.

    Google Scholar 

  29. 29.

    Penland, R. C., D. M. Harrild, and C. S. Henriquez. Modeling impulse propagation and extracellular potential distributions in anisotropic cardiac tissue using a finite volume element discretization. Comput. Vis. Sci. 4:215–226, 2002. doi:10.1007/s00791-002-0078-4.

    Google Scholar 

  30. 30.

    Pennec, X., P. Fillard, and N. Ayache. Riemannian framework for tensor computing. Int. J. Comput. Vis. 66:41–66, 2006.

    Article  Google Scholar 

  31. 31.

    Pilkington, T.C. High Performance Computing in Biomedical Research. Boca Raton: CRC Press, 1993.

    Google Scholar 

  32. 32.

    Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press, 2007.

    Google Scholar 

  33. 33.

    Proakis, J. G., and D. K. Manolakis. Digital Signal Processing (4th ed.). Upper Saddle River: Pearson Prentice Hall, 2007.

    Google Scholar 

  34. 34.

    Rauch, J., and J. Smoller. Qualitative theory of the FitzHugh-Nagumo equations. Adv. Math. 27:12–44, 1978.

    Article  Google Scholar 

  35. 35.

    Sepulveda, N., B. Roth, and J. Wikswo. Finite element bidomain calculations. In: IEEE Engineering in Medicine and Biology Society 10th Annual International Conference, 1988.

  36. 36.

    Sitz, A., J. Kurths, and H. U. Voss. Identification of nonlinear spatiotemporal systems via partitioned filtering. Phys. Rev. 68:016202, 2003.

    CAS  Google Scholar 

  37. 37.

    Sitz, A., U. Schwarz, J. Kurths, and H. U. Voss. Estimation of parameters and unobserved components for nonlinear systems from noisy time series. Phys. Rev. E 66:016210, 2002.

    Article  CAS  Google Scholar 

  38. 38.

    Sjoberg, J., Q. Zhang, L. Ljung, A. Benveniste, B. Deylon, P. Glorennec, H. Hjalmarsson, and A. Juditsky. Nonlinear black-box modeling in system identification: a unified overview. Automatica 31:1691–1724, 1995.

    Article  Google Scholar 

  39. 39.

    Soderstrom, T., and P. Stoica. System Identification. Upper Saddle River: Prentice Hall, 1989.

    Google Scholar 

  40. 40.

    Strikwerda, J. C. Finite Difference Schemes and Partial Differential Equations. Pacific Grove: Wadsworth and Brooks, 1989.

    Google Scholar 

  41. 41.

    Sun, N. Inverse Problems in Groundwater Modeling. Boston: Kluwer Academic Publishers, 1994.

    Google Scholar 

  42. 42.

    Tung, L. A bi-domain model for describing ischemic myocardial D-C potentials. Ph.D. dissertation. Cambridge, MA: MIT, 1978.

  43. 43.

    Valdes-Sosa, P. A., A. Roebroek, J. Daunizeau, and K. Friston. Effective connectivity: influence, causality and biophysical modeling. NeuroImage 58:339–361, 2011.

    PubMed  Article  Google Scholar 

  44. 44.

    Vanag, V. K., and I. R. Epstein. Localised patterns in reaction-diffusion systems. Chaos 17:037110, 2007.

    PubMed  Article  Google Scholar 

  45. 45.

    Willms, A. R., D. J. Baro, R. M. Harris-Warrick, and J. Guckenheimer. An improved parameter estimation method for Hodgkin-Huxley models. J. Comput. Neurosci. 6:145–168, 1999. doi:10.1023/A:1008880518515.

    Google Scholar 

Download references

Acknowledgments

MEA data set recorded at Italian Institute of Technology by using the high-resolution 4096-channel MEA platform of 3Brain GmbH, Switzerland. This work was supported in part by the McDonnell International Scholars Academy Fellowship, and also in part by a National Science found CCF-0963742. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the NSF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elad Gilboa.

Additional information

Associate Editor Zahra Moussavi oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (77 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gilboa, E., La Rosa, P.S. & Nehorai, A. Estimating Electrical Conductivity Tensors of Biological Tissues Using Microelectrode Arrays. Ann Biomed Eng 40, 2140–2155 (2012). https://doi.org/10.1007/s10439-012-0581-9

Download citation

Keywords

  • Inverse solution
  • Electrical conductivity
  • Bidomain model
  • Tensor field
  • Parallel optimization
  • Alternating optimization
  • Microelectrode array
  • Biological tissues