Skip to main content

Advertisement

Log in

Structural Systems Biology and Multiscale Signaling Models

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We review current advances in experimental as well as computational modeling and simulation approaches to structural systems biology, whose overall aim is to build quantitative models of signaling networks while retaining the crucial elements of molecular specificity. We briefly discuss the current and emerging experimental and computational methods, particularly focusing on hybrid and multiscale methods, and highlight several applications in cell signaling with quantitative and predictive capabilities. The scope of such models range from delineating protein–protein interactions to describing clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Agrawal, N. J., J. Nukpezah, and R. Radhakrishnan. Minimal mesoscale model for protein-mediated vesiculation in clathrin-dependent endocytosis. PLoS Comput. Biol. 6(9):e1000926, 2010.

    Article  PubMed  Google Scholar 

  2. Alber, F., et al. Determining the architectures of macromolecular assemblies. Nature 450(7170):683–701, 2007.

    Article  PubMed  CAS  Google Scholar 

  3. Aloy, P., and R. B. Russell. Structural systems biology: modelling protein interactions. Nat. Rev. Mol. Cell Biol. 7(3):188–197, 2006.

    Article  PubMed  CAS  Google Scholar 

  4. Ayton, G. S., and G. A. Voth. Multiscale simulation of protein mediated membrane remodeling. Semin. Cell Dev. Biol. 21(4):357–362, 2010.

    Article  PubMed  CAS  Google Scholar 

  5. Ayton, G. S., and G. A. Voth. Multiscale computer simulation of the immature HIV-1 virion. Biophys. J. 99(9):2757–2765, 2010.

    Article  PubMed  CAS  Google Scholar 

  6. Bessman, N. J., and M. A. Lemmon. Finding the missing links in EGFR. Nat. Struct. Mol. Biol. 19(1):1–3, 2012.

    Article  PubMed  CAS  Google Scholar 

  7. Bhalla, U. S., and R. Iyengar. Emergent properties of biological networks. Science 283:381–387, 1999.

    Article  PubMed  CAS  Google Scholar 

  8. Birtwistle, M. R., et al. Ligand-dependent responses of the ErbB signaling network: experimental and modeling analyses. Mol. Syst. Biol. 3:144, 2007.

    Article  PubMed  Google Scholar 

  9. Boudeau, J., et al. Emerging roles of pseudokinases. Trends Cell Biol. 16(9):443–452, 2006.

    Article  PubMed  CAS  Google Scholar 

  10. Bursulaya, B. D., et al. Comparative study of several algorithms for flexible ligand docking. J. Comput. Aided Mol. Des. 17(11):755–763, 2003.

    Article  PubMed  CAS  Google Scholar 

  11. Camacho, J. C., et al. Scoring dockied conformations generated by rigid body protein–protein docking. Proteins 40:525–537, 2000.

    Article  PubMed  CAS  Google Scholar 

  12. Chen, B., and R. Tycko. Simulated self-assembly of the HIV-1 capsid: protein shape and native contacts are sufficient for two-dimensional lattice formation. Biophys. J. 100(12):3035–3044, 2011.

    Article  PubMed  CAS  Google Scholar 

  13. Chen, C., R. Saxena, and G. W. Wei. A multiscale model for virus capsid dynamics. Int. J. Biomed. Imaging 2010:308627, 2010.

    PubMed  Google Scholar 

  14. Chen, H. M., et al. Evaluating molecular-docking methods for pose prediction and enrichment factors. J. Chem. Inf. Model. 46(1):401–415, 2006.

    Article  PubMed  CAS  Google Scholar 

  15. Citri, A., and Y. Yarden. EGF-ERBB signalling: towards the systems level. Nat. Rev. Mol. Cell Biol. 7(7):505–516, 2006.

    Article  PubMed  CAS  Google Scholar 

  16. Engelman, J. A., et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316(5827):1039–1043, 2007.

    Article  PubMed  CAS  Google Scholar 

  17. Fernandez-Martinez, J., et al. Structure–function mapping of a heptameric module in the nuclear pore complex. J. Cell Biol. 196:419–434, 2012.

    Article  PubMed  CAS  Google Scholar 

  18. Fiser, A., and A. Sali. Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol. 374:461–491, 2003.

    Article  PubMed  CAS  Google Scholar 

  19. Gebremichael, Y., J. W. Chu, and G. A. Voth. Intrinsic bending and structural rearrangement of tubulin dimer: molecular dynamics simulations and coarse-grained analysis. Biophys. J. 95(5):2487–2499, 2008.

    Article  PubMed  CAS  Google Scholar 

  20. Hicks, S. D., and C. L. Henley. Coarse-grained protein–protein stiffnesses and dynamics from all-atom simulations. Phys. Rev. E 81(31):030903, 2010.

    Article  Google Scholar 

  21. Hsieh, M. Y., et al. Spatio-temporal modeling of signaling protein recruitment to EGFR. BMC Syst. Biol. 4:57, 2010.

    Article  PubMed  Google Scholar 

  22. Huse, M., and J. Kuriyan. The conformational plasticity of protein kinases. Cell 109:275–282, 2002.

    Article  PubMed  CAS  Google Scholar 

  23. Johnston, I. G., A. A. Louis, and J. P. Doye. Modelling the self-assembly of virus capsids. J. Phys. Condens. Matter 22(10):104101, 2010.

    Article  PubMed  Google Scholar 

  24. Karplus, M., and J. Kuriyan. Molecular dynamics and protein function. Proc. Natl. Acad. Sci. USA 102(19):6679–6685, 2005.

    Article  PubMed  CAS  Google Scholar 

  25. Kholodenko, B. N. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7(3):165–176, 2006.

    Article  PubMed  CAS  Google Scholar 

  26. Kirchhausen, T. Three ways to make a vesicle. Nat. Rev. Mol. Cell Biol. 1(3):187–198, 2000.

    Article  PubMed  CAS  Google Scholar 

  27. Kloth, M. T., et al. STAT5b, a mediator of synergism between c-Src and the epidermal growth factor receptor. J. Biol. Chem. 278:1671–1679, 2003.

    Article  PubMed  CAS  Google Scholar 

  28. Liu, Y., et al. A multiscale computational approach to dissect early events in the Erb family receptor mediated activation, differential signaling, and relevance to oncogenic transformations. Ann. Biomed. Eng. 35(6):1012–1025, 2007.

    Article  PubMed  Google Scholar 

  29. Lynch, T. J., et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350(21):2129–2139, 2004.

    Article  PubMed  CAS  Google Scholar 

  30. Mohammadi, M., J. Schlessinger, and S. R. Hubbard. Structure of the FGF receptor tyrosine kinase domain reveals a novel autoinhibitory mechanism. Cell 86(4):577–587, 1996.

    Article  PubMed  CAS  Google Scholar 

  31. Mohammadi, M., et al. Structures of tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276:955–960, 1997.

    Article  PubMed  CAS  Google Scholar 

  32. Mohammadi, M., et al. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J. 17:5896–5904, 1998.

    Article  PubMed  CAS  Google Scholar 

  33. Mosesson, Y., G. B. Mills, and Y. Yarden. Derailed endocytosis: an emerging feature of cancer. Nat. Rev. Cancer 8(11):835–850, 2008.

    Article  PubMed  CAS  Google Scholar 

  34. Mulloy, R., et al. Epidermal growth factor receptor mutants from human lung cancers exhibit enhanced catalytic activity and increased sensitivity to gefitinib. Cancer Res. 67(5):2325–2330, 2007.

    Article  PubMed  CAS  Google Scholar 

  35. Oved, S., and Y. Yarden. Molecular ticket to enter cells. Nature 416:133–136, 2002.

    Article  PubMed  CAS  Google Scholar 

  36. Paez, J. G., et al. EGFR mutations in lung, cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500, 2004.

    Article  PubMed  CAS  Google Scholar 

  37. Periole, X., et al. Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J. Chem. Theory Comput. 5(9):2531–2543, 2009.

    Article  CAS  Google Scholar 

  38. Purvis, J., V. Ilango, and R. Radhakrishnan. Role of network branching in eliciting differential short-term signaling responses in the hyper-sensitive epidermal growth factor receptor mutants implicated in lung cancer. Biotechnol. Prog. 24(3):540–553, 2008.

    Article  PubMed  Google Scholar 

  39. Purvis, J., et al. Efficacy of tyrosine kinase inhibitors in the mutants of the epidermal growth factor receptor: a multiscale molecular/systems model for phosphorylation and inhibition. In: Proceedings of the Foundations in Systems Biology II. Stuttgart: IRB Verlag, 2007, pp. 289–294.

  40. Ramanan, V., et al. Systems biology and physical biology of clathrin-mediated endocytosis. Integr. Biol. 3(8):803–815, 2011.

    Article  CAS  Google Scholar 

  41. Saunders, M. G., and G. A. Voth. Coarse-graining of multiprotein assemblies. Curr. Opin. Struct. Biol. 22:144–150, 2012.

    Article  PubMed  CAS  Google Scholar 

  42. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103:211–225, 2000.

    Article  PubMed  CAS  Google Scholar 

  43. Schulze, W. X., L. Deng, and M. Mann. Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol. Syst. Biol. 1:E1–E13, 2005.

    Google Scholar 

  44. Shi, F., et al. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc. Natl. Acad. Sci. USA 107:7692–7697, 2010.

    Article  PubMed  CAS  Google Scholar 

  45. Shih, A. J., J. Purvis, and R. Radhakrishnan. Molecular systems biology of ErbB1 signaling: bridging the gap through multiscale modeling and high-performance computing. Mol. BioSyst. 4(12):1151–1159, 2008.

    Article  PubMed  CAS  Google Scholar 

  46. Shih, A. J., S. E. Telesco, and R. Radhakrishnan. Analysis of somatic mutations in cancer: molecular mechanisms of activation in the ErbB family of receptor tyrosine kinases. Cancers 3(1):1195–1231, 2011.

    Article  PubMed  CAS  Google Scholar 

  47. Shih, A., et al. The role for molecular modeling in multiscale cancer models. In: Multiscale Cancer Modeling of Cancer. Mathematical and Computational Biology Series, edited by T. S. Deisboeck, and G. Stamatakos. Boca Raton: Chapman & Hall/CRC, 2010, pp. 31–43.

    Google Scholar 

  48. Shih, A., et al. Molecular dynamics analysis of conserved hydrophobic and hydrophilic bond interaction networks in ErbB family kinases. Biochem. J. 436:241–251, 2011.

    Article  PubMed  CAS  Google Scholar 

  49. Sorkin, A., et al. Epidermal growth factor receptor interaction with clathrin adaptors is mediated by the Tyr974-containing internalization motif. J. Biol. Chem. 271(23):13377–13384, 1996.

    Article  PubMed  CAS  Google Scholar 

  50. Stark, H., et al. Arrangement of RNA and proteins in the spliceosomal U1 small nuclear ribonucleoprotein particle. Nature 409(6819):539–542, 2001.

    Article  PubMed  CAS  Google Scholar 

  51. Suenaga, A., et al. Molecular dynamics simulations reveal that Tyr-317 phosphorylation reduces Shc binding affinity for phosphotyrosyl residues of epidermal. Growth Factor Recept. 96(6):2278–2288, 2009.

    CAS  Google Scholar 

  52. Tama, F., and C. L. Brooks. Symmetry, form, and shape: guiding principles for robustness in macromolecular machines. Annu. Rev. Biophys. Biomol. Struct. 35:115–133, 2006.

    Article  PubMed  CAS  Google Scholar 

  53. Taylor, W. R., and Z. Katsimitsoulia. A coarse-grained molecular model for actin-myosin simulation. J. Mol. Graph. Model. 29(2):266–279, 2010.

    Article  PubMed  CAS  Google Scholar 

  54. Telesco, S. E., and R. Radhakrishnan. Atomistic insights into regulatory mechanisms of the HER2 tyrosine kinase domain: a molecular dynamics study. Biophys. J. 96(6):2321–2334, 2009.

    Article  PubMed  CAS  Google Scholar 

  55. Telesco, S. E., A. Shih, Y. Liu, and R. Radhakrishnan. Investigating molecular mechanisms of activation and mutation of the HER2 receptor tyrosine kinase through computational modeling and simulation. Cancer Research Journal 4(4):1–35, 2011.

    Google Scholar 

  56. Telesco, S. E., et al. A multiscale modeling approach to investigate molecular mechanisms of pseudokinase activation and drug resistance in the HER3/ErbB3 receptor tyrosine kinase signaling network. Mol. BioSyst. 7(6):2066–2080, 2011.

    Article  PubMed  CAS  Google Scholar 

  57. Wang, E. (ed.). Cancer Systems Biology. Mathematical and Computational Biology Series. London: CRC Press/Taylor and Francis, 2010.

    Google Scholar 

  58. E, W., and B. Engquist. Multiscale modeling in computation. Notices AMS 50(9):1062–1070, 2003.

    Google Scholar 

  59. E, W., B. Engquist, and Z. Y. Huang. Heterogeneous multiscale method: a general methodology for multiscale modeling. Phys. Rev. B 67(9):092101, 2003.

    Article  Google Scholar 

  60. Westerhoff, H. V., and B. O. Palsson. The evolution of molecular biology into systems biology. Nat. Biotechnol. 22(10):1249–1252, 2004.

    Article  PubMed  CAS  Google Scholar 

  61. Yarden, Y., and M. X. Sliwkowski. Untangling the ErbB signaling network. Nat. Rev. Mol. Cell Biol. 2:127–137, 2001.

    Article  PubMed  CAS  Google Scholar 

  62. Zhang, X., et al. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125(6):1137–1149, 2006.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from NSF grants CBET-0853389 and CBET-0853539. Computational resources were provided in part by the National Partnership for Advanced Computational Infrastructure (NPACI) under the allocation grant MRAC MCB060006. S.E.T. was supported by the National Institutes of Health under Ruth L. Kirschstein National Research Service Award 2T32HL007954 from the NIH-NHLBI, a National Science Foundation Graduate Research Fellowship, and a Graduate Assistantship in Areas of National Need (GAANN) from the Department of Education.

Conflicts of Interest

No conflicts of interest apply to this manuscript and related work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Radhakrishnan.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Telesco, S.E., Radhakrishnan, R. Structural Systems Biology and Multiscale Signaling Models. Ann Biomed Eng 40, 2295–2306 (2012). https://doi.org/10.1007/s10439-012-0576-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0576-6

Keywords

Navigation