Skip to main content
Log in

The Development of Novel Biodegradable Bifurcation Stents for the Sustainable Release of Anti-Proliferative Sirolimus

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this report, a balloon-expandable, biodegradable, drug-eluting bifurcation stent (DEBS) that provides a sustainable release of anti-proliferative sirolimus was developed. Biodegradable bifurcation stents, made of polycaprolactone, were first manufactured by injection molding and hot spot welding techniques. Various properties of the fabricated stents, including compression strengths, collapse pressures, and flow pattern in a circulation test, were characterized. The experimental results showed that biodegradable bifurcation stents exhibited comparable mechanical properties with those of metallic stents and superior flow behavior to that of metallic bifurcation stents deployed via the T And small Protrusion approach. Polylactide-polyglycolide (PLGA) copolymer and sirolimus were then dissolved in acetonitrile and coated onto the surface of the stents by a spray coating device. An elution method and a high performance liquid chromatography analysis were utilized to examine the in vitro release characteristics of sirolimus. Biodegradable bifurcation stents released high concentrations of sirolimus for more than 6 weeks, and the total period of drug release could be prolonged by increasing the drug loading of the PLGA/sirolimus coating layers. In addition, the eluted drug could effectively inhibit the proliferation of smooth muscle cells. The developed DEBS in this study may provide a promising strategy for the treatment of cardiovascular bifurcation lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Acharya, G., and K. Park. Mechanisms of controlled drug release from drug-eluting stents. Adv. Drug Deliv. Rev. 58:387–401, 2006.

    Article  PubMed  CAS  Google Scholar 

  2. Al Suwaidi, J., W. Yeh, H. A. Cohen, K. M. Detre, D. O. Williams, and D. R. Holmes, Jr. Immediate and one-year outcome in patients with coronary bifurcation lesions in the modern era (NHLBI dynamic registry). Am. J. Cardiol. 87:1139–1144, 2001.

    Article  PubMed  CAS  Google Scholar 

  3. Alexis, F., S. S. Venkatraman, S. K. Rath, and F. Boey. In vitro study of release mechanisms of paclitaxel and rapamycin from drug-incorporated biodegradable stent matrices. J. Control. Release 98:67–74, 2004.

    Article  PubMed  CAS  Google Scholar 

  4. Burt, H. M., and W. L. Hunter. Drug-eluting stents: a multidisciplinary success story. Adv. Drug Deliv. Rev. 58:350–357, 2006.

    Article  PubMed  CAS  Google Scholar 

  5. Chen, M. C., Y. Chang, C. T. Liu, W. Y. Lai, S. F. Peng, Y. W. Hung, H. W. Tsai, and H. W. Sung. The characteristics and in vivo suppression of neointimal formation with sirolimus-eluting polymeric stents. Biomaterials 30:79–88, 2009.

    Article  PubMed  CAS  Google Scholar 

  6. Cho, G. Y., C. W. Lee, M. K. Hong, J. J. Kim, S. W. Park, and S. J. Park. Effects of stent design on side branch occlusion after coronary stent placement. Catheter Cardiovasc. Interv. 52:18–23, 2001.

    Article  PubMed  CAS  Google Scholar 

  7. Colombo, A., and E. Karvouni. Biodegradable stents: fulfilling the mission and stepping away. Circulation 102(4):371–373, 2000.

    Article  PubMed  CAS  Google Scholar 

  8. Colombo, A., J. W. Moses, M. C. Morice, J. Ludwig, D. R. Holmes, Jr., V. Spanos, et al. Randomized study to evaluate sirolimus-eluting stents implanted at coronary bifurcation lesions. Circulation 109:1244–1249, 2004.

    Article  PubMed  Google Scholar 

  9. Daemon, J., and P. W. Serruys. Drug-eluting stent update 2007 Part I: a survey of current and future generation drug-eluting stents: meaningful advances or more of the same? Circulation 116:316–328, 2007.

    Article  Google Scholar 

  10. Daemon, J., and P. W. Serruys. Drug-eluting stent update 2007 Part II: unsettled issues. Circulation 116:961–968, 2007.

    Article  Google Scholar 

  11. Fillinger, M. F., L. N. Sampson, J. L. Cronenwett, R. J. Powell, and R. J. Wagner. Coculture of endothelial cells and smooth muscle cells in bilayer and conditioned media models. J. Surg. Res. 67:169–178, 1997.

    Article  PubMed  CAS  Google Scholar 

  12. Garg, S., and P. W. Serruys. Coronary stents: current status. J. Am. Coll. Cardiol. 56(2):1–42, 2010.

    Article  Google Scholar 

  13. Gospodarowicz, D., K. Hirabayashi, L. Giguere, and J. P. Tauber. Factors controlling the proliferative rate, final cell density, and life span of bovine vascular smooth muscle cells in culture. J. Cell Biol. 89:568–578, 1981.

    Article  PubMed  CAS  Google Scholar 

  14. Guérin, P., P. Pilet, G. Finet, Y. Gouëffic, J. M. N’Guyen, D. Crochet, I. Tijou, P. Pacaud, and G. Loirand. Drug-eluting stents in bifurcations: bench study of strut deformation and coating lesions. Catheter Cardiovasc. Interv. 3:120–126, 2010.

    Google Scholar 

  15. Hietala, E. M., P. Maasilta, T. Välimaa, A. L. J. Harjula, P. Törmälä, U. S. Salminen, and R. Lassila. Platelet responses and coagulation activation on polylactide and heparin-polycaprolactone-l-lactide-coated polylactide stent struts. J. Biomed. Mater. Res. 67A:785–791, 2003.

    Article  CAS  Google Scholar 

  16. Htay, T., and M. W. Liu. Drug-eluting stent: a review and update. Vascul. Health Risk Manag. 1(4):263–276, 2005.

    Article  CAS  Google Scholar 

  17. Jiang, S., X. Ji, L. An, and B. Jiang. Crystallization behavior of PCL in hybrid confined environment. Polymer 42:3901–3907, 2001.

    Article  CAS  Google Scholar 

  18. Korpela, A., P. Aarnio, H. Sariola, P. Tormala, and A. Harjula. Bioabsorbable self-reinforced poly-l-lactide, metallic, and silicone stents in the management of experimental tracheal stenosis. Chest 115:490–495, 1999.

    Article  PubMed  CAS  Google Scholar 

  19. Kraitzer, A., L. Ofek, R. Schreiber, and M. Zilberman. Long-term in vitro study of paclitaxel-eluting bioresorbable core/shell fiber structures. J. Contr. Release 126:139–148, 2008.

    Article  CAS  Google Scholar 

  20. Laarman, G., M. J. Suttorp, M. T. Dirksen, L. Van Heerebeek, F. Kiemeneij, T. Slagboom, L. R. Van der Wieken, J. G. P. Tijssen, B. Rensing, and M. Patterson. Paclitaxel-eluting versus uncoated stents in primary percutaneous coronary intervention. N. Engl. J. Med. 355:1105–1113, 2006.

    Article  PubMed  CAS  Google Scholar 

  21. Lao, L. L., S. S. Venkatraman, and N. A. Peppas. Modeling of drug release from biodegradable polymer blends. Eur. J. Pharm. Biopharm. 70:796–803, 2008.

    Article  PubMed  CAS  Google Scholar 

  22. Lefevre, T., Y. Louvard, M. C. Morice, P. Dumas, C. Loubeyre, A. Benslimane, et al. Stenting of bifurcation lesions: classification, treatments, and results. Catheter Cardiovasc. Interv. 49:274–283, 2000.

    Article  PubMed  CAS  Google Scholar 

  23. Liu, S. J., F. J. Chiang, C. Y. Hsiao, Y. C. Kau, and K. S. Liu. Fabrication of balloon-expandable self-lock drug-eluting polycaprolactone stents using micro-injection molding and spray coating techniques. Ann. Biomed. Eng. 38:3185–3194, 2010.

    Article  PubMed  Google Scholar 

  24. Liu, S. J., C. Y. Hsiao, J. K. Chen, K. S. Liu, and C. H. Lee. In vitro release of anti-proliferative paclitaxel from novel balloon-expandable polycaprolactone stents. Mater. Sci. Eng. C: Mater. Biol. Appl. 31:1129–1135, 2011.

    Article  CAS  Google Scholar 

  25. Louvard, Y., M. Thomas, V. Dzavik, D. Hildich-Smith, A. R. Galassi, M. Pan, et al. Classification of coronary artery bifurcation lesions and treatment: time for a consensus. Catheter Cardiovasc. Interv. 71:175–183, 2008.

    Article  PubMed  Google Scholar 

  26. Meier, B., A. R. Gruentzig, S. B. King, III, J. S. Douglas, Jr., J. Hollman, T. Ischinger, et al. Risk of side branch occlusion during coronary angioplasty. Am. J. Cardiol. 53:10–14, 1984.

    Article  PubMed  CAS  Google Scholar 

  27. Meng, B., J. Wang, N. Zhu, Q. Y. Meng, F. Z. Cui, and Y. X. Xu. Study of biodegradable and self-expandable PLLA helical biliary stent in vivo and in vitro. J. Mater. Sci. Mater. Med. 17:611–617, 2006.

    Article  PubMed  CAS  Google Scholar 

  28. Murasato, Y. Impact of three-dimensional characteristics of the left main coronary artery bifurcation on outcome of crush stenting. Catheter Cardiovasc. Interv. 69:248–256, 2007.

    Article  PubMed  Google Scholar 

  29. Nakazawa, G., A. V. Finn, M. Joner, E. Ladich, R. Kutys, E. K. Mont, H. K. Gold, A. P. Burke, F. D. Kolodgie, and R. Virmani. Delayed arterial healing and increased late stent thrombosis at culprit sites after drug-eluting stent placement for acute myocardial infarction patients: an autopsy study. Circulation 118:1138–1145, 2008.

    Article  PubMed  Google Scholar 

  30. Pan, M., J. Suarez de Lezo, A. Medina, M. Romero, A. Delgado, J. Segura, et al. Drug-eluting stents for the treatment of bifurcation lesions: a randomized comparison between paclitaxel and sirolimus stents. Am. Heart J. 153(15):e1–e7, 2007.

    PubMed  Google Scholar 

  31. Pires, N. M. M., B. L. Van der Hoeven, M. R. De Vries, L. M. Havekes, B. J. Van Vlijmen, W. E. Hennink, P. H. A. Quax, and J. W. Jukema. Local perivascular delivery of anti-restenotic agents from a drug-eluting poly(ε-caprolactone) stent cuff. Biomaterials 26:5386–5394, 2005.

    Article  PubMed  CAS  Google Scholar 

  32. Serruys, P. W., J. Aoki, D. McClean, M. Pieper, and E. Sousa. The effect of variable dose and release kinetics on neointimal hyperplasia using a novel paclitaxel-eluting stent platform. J. Am. Coll. Cardiol. 46(2):253–260, 2005.

    Article  PubMed  CAS  Google Scholar 

  33. Song, P. S., D. R. Ryu, Y. B. Song, J.-Y. Hahn, J.-H. Choi, S. H. Lee, et al. Long-term outcomes of sirolimus-eluting stents vs paclitaxel-eluting stents in unprotected left main coronary artery bifurcation lesions. Clin. Cardiol. 34:378–383, 2011.

    Article  PubMed  CAS  Google Scholar 

  34. Steigen, T. K., M. Maeng, R. Wiseth, A. Erglis, I. Kumsars, I. Narbute, et al. Randomized study on simple versus complex stenting of coronary artery bifurcation lesions: the Nordic bifurcation study. Circulation 114:1955–1961, 2006.

    Article  PubMed  Google Scholar 

  35. Van de Werf, F. Drug-eluting stents in acute myocardial infarction. N. Engl. J. Med. 355:1169–1170, 2006.

    Article  PubMed  Google Scholar 

  36. Venkatraman, S. S., T. L. Poh, T. Vinalia, K. H. Mak, and F. Boey. Collapse pressures of biodegradable stents. Biomaterials 24:2105–2111, 2003.

    Article  PubMed  CAS  Google Scholar 

  37. Virmani, R., G. Guagliumi, A. Farb, G. Musumeci, N. Grieco, T. Motta, L. Mihalcsik, M. Tespili, O. Valsecchi, and F. D. Kolodgie. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation 109:701–705, 2004.

    Article  PubMed  Google Scholar 

  38. Wang, X., S. S. Venkatraman, F. Boey, J. S. C. Loo, and L. P. Tan. Controlled release of sirolimus from a multilayered PLGA stent matrix. Biomaterials 27:5588–5595, 2006.

    Article  PubMed  CAS  Google Scholar 

  39. Woodruff, M. A., and D. W. Hutmacher. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog. Polym. Sci. 35:1217–1256, 2010.

    Article  CAS  Google Scholar 

  40. Yamashita, T., T. Nishida, M. G. Adamian, C. Briguori, M. Vaghetti, N. Corvaja, et al. Bifurcation lesions: two stents versus one stent-immediate and follow-up results. J. Am. Coll. Cardiol. 35:1145–1151, 2000.

    Article  PubMed  CAS  Google Scholar 

  41. Yang, S., K.-F. Leong, Z. Du, and C.-K. Chua. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 7:679–689, 2001.

    Article  PubMed  CAS  Google Scholar 

  42. Zidar, J. P., M. A. Lincoff, and R. S. Stack. Biodegradable stents. In: Textbook of Interventional Cardiology, 2nd ed., edited by E. J. Topol. New York: Saunders, 1994.

    Google Scholar 

  43. Zilberman, M., K. D. Nelson, and R. C. Eberhart. Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents. J. Biomed. Mater. Res. B: Appl. Biomater. 74(2):792–799, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Jung Liu.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CH., Chen, CJ., Liu, SJ. et al. The Development of Novel Biodegradable Bifurcation Stents for the Sustainable Release of Anti-Proliferative Sirolimus. Ann Biomed Eng 40, 1961–1970 (2012). https://doi.org/10.1007/s10439-012-0556-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0556-x

Keywords

Navigation