Skip to main content
Log in

Involvement of p38MAPK/NF-κB Signaling Pathways in Osteoblasts Differentiation in Response to Mechanical Stretch

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Bone morphogenetic proteins (BMPs) are known to be important in osteoblasts’ response to mechanical stimuli. BMPs/Smad signaling pathway has been demonstrated to play a regulatory role in the mechanical signal transduction in osteoblasts. However, little is currently known about the Smad independent pathway in osteoblasts differentiation in mechanical loading. In this study, MC3T3-E1 cells were subjected to mechanical stretch of 2000 micro-stain (με) at 0.5 Hz, in order to investigate the involvement of p38MAPK and NF-κB signaling pathways in mechanical response in osteoblasts. We found BMP-2/BMP-4 were up-regulated by mechanical stretch via the earlier activation of p38MAPK and NF-κB signaling pathways, which enhanced osteogenic gene expressions including alkaline phosphatase (ALP), collagen type I (Col I) and osteocalcin (OCN), and the expressions of these osteogenic genes were remarkably decreased with Noggin (an inhibitor for BMPs signals) pretreatment. Furthermore, BMP-2/BMP-4 expressions were suppressed by PDTC, an inhibitor of NF-κB pathway and SB203580, an inhibitor of p38MAPK pathway, respectively, leading to the declined levels of ALP, Col I and OCN. Interestingly, blocking in p38MAPK pathway can also cause the inactivation of NF-κB pathway in mechanical stretch. Collectively, the results indicate during mechanical stretch p38MAPK and NF-κB signaling pathways are activated first, and then up-regulate BMP-2/BMP-4 to enhance osteogenic gene expressions. Moreover, p38MAPK and NF-κB signals have cross-talk in regulation of BMP-2/BMP-4 in mechanical response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Boden, S. D., J. Kang, H. Sandhu, and J. G. Heller. Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. Spine 27:2662–2673, 2002.

    Article  PubMed  Google Scholar 

  2. Canalis, E., A. N. Economides, and E. Gazzerro. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr. Rev. 24:218–235, 2003.

    Article  PubMed  CAS  Google Scholar 

  3. Coulthard, L. R., D. E. White, D. L. Jones, M. F. McDermott, and S. A. Burchill. p38 (MAPK): stress responses from molecular mechanisms to therapeutics. Trends Mol. Med. 15:369–379, 2009.

    Article  PubMed  CAS  Google Scholar 

  4. Csiszar, A., K. E. Smith, A. Koller, G. Kaley, J. G. Edwards, and Z. Ungvari. Regulation of bone morphogenetic protein-2 expression in endothelial cells: role of nuclear factor-kappaB activation by tumor necrosis factor-alpha, H2O2, and high intravascular pressure. Circulation 111:2364–2372, 2005.

    Article  PubMed  CAS  Google Scholar 

  5. Derynck, R., and Y. E. Zhang. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584, 2003.

    Article  PubMed  CAS  Google Scholar 

  6. Ghosh, S., and M. S. Hayden. New regulators of NF-kB in inflammation. Nat. Rev. Immunol. 8:837–848, 2008.

    Article  PubMed  CAS  Google Scholar 

  7. Granet, C., N. Boutahar, L. Vico, C. Alexandre, and M. H. Lafage-Proust. MAPK and SRC-Kinases control EGR-1 and NF-kB Inductions by changes in mechanical environment in osteoblasts. Biochem. Biophys. Res. Commun. 284:622–631, 2001.

    Article  PubMed  CAS  Google Scholar 

  8. Hamamura, K., M. B. Goldring, and H. Yokota. Involvement of p38 MAPK in regulation of MMP13 mRNA in chondrocytes in response to surviving stress to endoplasmic reticulum. Arch. Oral Biol. 54:279–286, 2009.

    Article  PubMed  CAS  Google Scholar 

  9. Hu, Y., E. Chan, S. X. Wang, and B. Li. Activation of p38 mitogen-activated protein kinase is required for osteoblast differentiation. Endocrinology 144:2068–2074, 2003.

    Article  PubMed  CAS  Google Scholar 

  10. Huang, X. F., and Y. Chai. TGF-β signalling and tooth development. Chin. J Dent. Res. 13:7–15, 2010.

    PubMed  CAS  Google Scholar 

  11. Jimi, E., K. Aoki, H. Saito, F. D. Acquisto, M. J. May, I. Nakamura, T. Sudo, T. Kojima, F. Okamoto, H. Fukushima, K. Okabe, K. Ohya, and S. Ghosh. Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat. Med. 10:617–624, 2004.

    Article  PubMed  CAS  Google Scholar 

  12. Kanazawa, I., T. Yamaguchi, S. Yano, M. Yamauchi, M. Yamamoto, and T. Suqimoto. Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. BMC Cell Biol. 8:51, 2007.

    Article  PubMed  Google Scholar 

  13. Kaspar, D., W. Seidl, C. Neidlinger-Wilke, A. Ignatius, and L. Claes. Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J. Biomech. 33:45–51, 2000.

    Article  PubMed  CAS  Google Scholar 

  14. Kawaki, H., S. Kubota, A. Suzuki, M. Suzuki, K. Kohsaka, K. Hoshi, T. Fujii, N. Lazar, T. Ohgawara, T. Maeda, B. Perbal, T. Takano-Yamamoto, and M. Takigawa. Differential roles of CCN family proteins during osteoblast differentiation: Involvement of Smad and MAPK signaling pathways. Bone 49:975–989, 2011.

    Article  PubMed  CAS  Google Scholar 

  15. Khanal, A., I. Yoshioka, K. Tominaga, N. Furuta, M. Habu, and J. Fukuda. The BMP signaling and its Smads in mandibular distraction osteogenesis. Oral Dis. 14:347–355, 2008.

    Article  PubMed  CAS  Google Scholar 

  16. Kohli, S. S., and V. S. Kohli. Role of RANKL-RANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications. Indian J Endocrinol. Metab. 15:175–181, 2011.

    Article  PubMed  CAS  Google Scholar 

  17. Lanyon, L. E., and C. T. Rubin. Static vs dynamic loads as an influence on bone remodeling. J. Biomech. 17:897–905, 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Lanyon, L. E., C. T. Rubin, and G. Baust. Modulation of bone loss during calcium insufficiency by controlled dynamic loading. Calcif. Tissue Int. 38:209–216, 1986.

    Article  PubMed  CAS  Google Scholar 

  19. Lee, S. W., S. I. Han, H. H. Kim, and Z. H. Lee. TAK1-dependent activation of AP-1 and c-Jun N-terminal kinase by receptor activator of NF-kappaB. J. Biochem. Mol. Biol. 35:371–376, 2002.

    Article  PubMed  Google Scholar 

  20. Lieberman, J. R., A. Daluiski, and T. A. Einhorn. The role of growth factors in the repair of bone. Biology and clinical applications. J. Bone Joint Surg. Am. 84-A:1032–1044, 2002.

    PubMed  Google Scholar 

  21. Liu, A., and L. A. Niswander. Bone morphogenetic protein signaling and vertebrate nervous system development. Nat. Rev. Neurosci. 6:945–954, 2005.

    Article  PubMed  CAS  Google Scholar 

  22. Mitsui, N., N. Suzuki, M. Maeno, M. Yanagisawa, Y. Koyama, K. Otsuka, and N. Shimizu. Optimal compressive force induces bone formation via increasing bone morphogenetic proteins production and decreasing their antagonists production by Saos-2 cells. Life Sci. 78:2697–2706, 2006.

    Article  PubMed  CAS  Google Scholar 

  23. Miyazono, K., S. Maeda, M. Shin, and T. Imamura. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev. 16:251–263, 2005.

    Article  PubMed  CAS  Google Scholar 

  24. Mullender, M., A. J. El Haj, Y. Yang, M. A. van Duin, E. H. Burger, and J. Klein-Nulend. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue. Med. Biol. Eng. Comput. 42:14–21, 2004.

    Article  PubMed  CAS  Google Scholar 

  25. Noth, U., R. Tuli, R. Seghatoleslami, M. Howard, A. Shah, D. J. Hall, N. J. Hickok, and R. S. Tuan. Activation of p38 and Smads mediates BMP-2 effects on human trabecular bone-derived osteoblasts. Exp. Cell Res. 291:201–211, 2003.

    Article  PubMed  CAS  Google Scholar 

  26. Palma Di, F., M. Douet, C. Boachon, A. Guignandon, S. Peyroche, B. Forest, C. Alexandre, A. Chamson, and A. Rattner. Physiological strains induce differentiation in human osteoblasts cultured on orthopaedic biomaterial. Biomaterials 24:3139–3151, 2003.

    Article  Google Scholar 

  27. Pead, M. J., T. M. Skerry, and J. E. Lanyon. Direct transformation from quiescence to bone formation in the adult periosteum following a single brief period of bone loading. J. Bone Miner. Res. 3:647–656, 1988.

    Article  PubMed  CAS  Google Scholar 

  28. Qi, M. C., J. Hu, S. J. Zou, H. Q. Chen, H. X. Zhou, and L. C. Han. Mechanical strain induces osteogenic differentiation: Cbfa1 and Ets-1 expression in stretched rat mesenchymal stem cells. Int. J. Oral Maxillofac. Surg. 37:453–458, 2008.

    Article  PubMed  Google Scholar 

  29. Rubin, C. T., and L. E. Lanyon. Regulation of bone formation by applied dynamic loads. J. Bone Joint Surg. Am. 66:397–402, 1984.

    PubMed  CAS  Google Scholar 

  30. Ryu, B., Z. J. Qian, and S. K. Kim. Purification of a peptide from seahorse, that inhibits TPA-induced MMP, iNOS and COX-2 expression through MAPK and NF-kappaB activation, and induces human osteoblastic and chondrocytic differentiation. Chem. Biol. Interact. 184:413–422, 2010.

    Article  PubMed  CAS  Google Scholar 

  31. Schriefer, J. L., S. J. Warden, L. K. Saxon, A. G. Robling, and C. H. Turner. Cellular accommodation and the response of bone to mechanical loading. J. Biomech. 38:1838–1845, 2005.

    Article  PubMed  Google Scholar 

  32. Sieber, C., J. Kopf, C. Hiepen, and P. Knaus. Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev. 20:343–355, 2009.

    Article  PubMed  CAS  Google Scholar 

  33. Sudo, H., H. A. Kodama, Y. Amagai, S. Yamamoto, and S. Kasai. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell Biol. 96:191–198, 1983.

    Article  PubMed  CAS  Google Scholar 

  34. Suzuki, J., M. Ogawa, S. Muto, A. Itai, M. Isobe, Y. Hirata, and R. Nagai. Novel IkB kinase inhibitors for treatment of nuclear factor-kB-related diseases. Expert Opin. Investig. Drugs 20:395–405, 2011.

    Article  PubMed  CAS  Google Scholar 

  35. Tang, L. L., Y. L. Wang, J. Pan, and S. X. Cai. The effect of step-wise increased stretching on rat calvarial osteoblast collagen production. J. Biomech. 37:157–161, 2004.

    Article  PubMed  Google Scholar 

  36. Tanno, M., K. I. Furukawa, K. Ueyama, S. Harata, and S. Motomura. Uniaxial cyclic stretch induces osteogenic differentiation and synthesis of bone morphogenetic proteins of spinal ligament cells derived from patients with ossification of the posterior longitudinal ligaments. Bone 33:475–484, 2003.

    Article  PubMed  CAS  Google Scholar 

  37. Urist, M. R. Osteoinduction in undemineralized bone implants modified by chemical inhibitors of endogenous matrix enzymes. A preliminary report. Clin. Orthop. Relat. Res. 87:132–137, 1972.

    Article  PubMed  CAS  Google Scholar 

  38. Vinals, F., T. Lopez-Rovira, J. L. Rosa, and F. Ventura. Inhibition of PI3 K/p70 S6 K and p38 MAPK cascades increases osteoblastic differentiation induced by BMP-2. FEBS Let. 510:99–104, 2002.

    Article  CAS  Google Scholar 

  39. Wan, M., and X. Cao. BMP signaling in skeletal development. Biochem. Biophys. Res. Commun. 328:651–657, 2005.

    Article  PubMed  CAS  Google Scholar 

  40. Wang, L., X. Z. Zhang, Y. Guo, X. Z. Chen, R. X. Li, L. Liu, C. H. Shi, C. Guo, and Y. Zhang. Involvement of BMPs/Smad signaling pathway in mechanical response in osteoblasts. Cell. Physiol. Biochem. 26:1093–1102, 2010.

    Article  PubMed  Google Scholar 

  41. Wozney, J. M., V. Rosen, A. J. Celeste, L. M. Mitsock, M. J. Whitters, R. W. Kriz, R. M. Hewick, and E. A. Wang. Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534, 1988.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Nature Science Foundation of China (No. 10832012).

Conflict of interest

All the authors certify that they have no financial and personal relationship that could inappropriately influence or bias this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-zheng Zhang.

Additional information

Associate Editor Kent Leach oversaw the review of this article.

Liang Wang and Jian-yu Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Li, Jy., Zhang, Xz. et al. Involvement of p38MAPK/NF-κB Signaling Pathways in Osteoblasts Differentiation in Response to Mechanical Stretch. Ann Biomed Eng 40, 1884–1894 (2012). https://doi.org/10.1007/s10439-012-0548-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0548-x

Keywords

Navigation