Annals of Biomedical Engineering

, Volume 40, Issue 8, pp 1814–1824 | Cite as

Detecting Biochemical Changes in the Rodent Cervix During Pregnancy Using Raman Spectroscopy

  • Elizabeth Vargis
  • Naoko Brown
  • Kent Williams
  • Ayman Al-Hendy
  • Bibhash C. Paria
  • Jeff Reese
  • Anita Mahadevan-Jansen


The goal of this research is to determine whether Raman spectroscopy (RS), an optical method that probes the vibrational modes of tissue components, can be used in vivo to study changes in the mouse cervix during pregnancy. If successful, such a tool could be used to detect cervical changes due to pregnancy, both normal and abnormal, in animal models and humans. For this study, Raman spectra were acquired before, during and after a 19-day mouse gestational period. In some cases, after Raman data was obtained, cervices were excised for structural testing and histological staining for collagen and smooth muscle. Various peaks of the Raman spectra, such as the areas corresponding to fatty acid content and collagen organization, changed as the cervix became softer in preparation for labor and delivery. These findings correspond to the increase in compliance of the tissue and the collagen disorganization visualized with the histological staining. The results of this study suggest that non-invasive RS can be used to study cervical changes during pregnancy, labor and delivery and can possibly predict preterm delivery before overt clinical manifestations, potentially lead to more effective preventive and therapeutic interventions.


Raman spectroscopy Structural testing Biomedical photonics Gestation Parturition 



The authors acknowledge the financial support of the National Institutes of Health (Grant No. R01-CA-095405, AMJ and HD 044741, BCP) and a predoctoral fellowship (Grant No. T32-HL7751-15) for EV. Special thanks go to Stan Poole and Wais Folad for their help with the structural testing experiments, Xiahong Bi for conversations about Raman peak assignments and Amy Rudin for proofreading this paper.

Conflict of interest

None of the authors of the above manuscript has declared any conflict of interest within the last three years which may arise from being named as an author on the manuscript.


  1. 1.
    Akins, M. L., K. Luby-Phelps, R. A. Bank, and M. Mahendroo. Cervical softening during pregnancy-regulated changes in collagen cross-linking and composition of matricellular proteins in the mouse. Biol. Reprod. 84:1053–1062, 2011.PubMedCrossRefGoogle Scholar
  2. 2.
    Akins, M. L., K. Luby-Phelps, and M. Mahendroo. Second harmonic generation imaging as a potential tool for staging pregnancy and predicting preterm birth. J. Biomed. Opt. 15:026020, 2010.PubMedCrossRefGoogle Scholar
  3. 3.
    Arp, Z., D. Autrey, J. Laane, S. A. Overman, and G. J. Thomas, Jr. Tyrosine Raman signatures of the filamentous virus Ff are diagnostic of non-hydrogen-bonded phenoxyls: demonstration by Raman and infrared spectroscopy of p-cresol vapor. Biochemistry 40:2522–2529, 2001.PubMedCrossRefGoogle Scholar
  4. 4.
    Basar, G., U. Parlatan, and S. Seniak. Investigation of preeclampsia by Raman spectroscopy. SPIE 1267:378, 2010.Google Scholar
  5. 5.
    Behrman, R. E., Butler, A. S., and Institute of Medicine (U.S.). Committee on Understanding Premature Birth and Assuring Healthy Outcomes. Preterm Birth: Causes, Consequences, and Prevention. Washington: National Academies Press, 2007.Google Scholar
  6. 6.
    Challis, J. R. G., S. G. Matthews, W. Gibb, and S. J. Lye. Endocrine and paracrine regulation of birth at term and preterm. Endocr. Rev. 21:514–550, 2000.PubMedCrossRefGoogle Scholar
  7. 7.
    Croix, D., and P. Franchimont. Changes in the serum levels of the gonadotrophins progesterone and estradiol during the estrous cycle of the guinea pig. Neuroendocrinology 19:1–11, 1975.PubMedCrossRefGoogle Scholar
  8. 8.
    Deb, K., J. Reese, and B. C. Paria. Methodologies to study implantation in mice. Methods Mol. Med. 121:9–34, 2005.Google Scholar
  9. 9.
    Erez, O., F. Gotsch, S. Mazaki-Tovi, E. Vaisbuch, J. P. Kusanovic, C. J. Kim, T. Chaiworapongsa, D. Hoppensteadt, J. Fareed, and N. G. Than. Evidence of maternal platelet activation, excessive thrombin generation, and high amniotic fluid tissue factor immunoreactivity and functional activity in patients with fetal death. J. Matern. Fetal Neonatal Med. 22:672–687, 2009.PubMedCrossRefGoogle Scholar
  10. 10.
    Fosang, A. J., C. Handley, V. Santer, D. Lowther, and G. Thorburn. Pregnancy-related changes in the connective tissue of the ovine cervix. Biol. Reprod. 30:1223, 1984.PubMedCrossRefGoogle Scholar
  11. 11.
    Frank, C. J., R. L. McCreery, and D. C. B. Redd. Raman spectroscopy of normal and diseased human breast tissues. Anal. Chem. 67:777–783, 1995.PubMedCrossRefGoogle Scholar
  12. 12.
    Garfield, R. E., H. Maul, W. Maner, C. Fittkow, G. Olson, L. Shi, and G. R. Saade. Uterine electromyography and light-induced fluorescence in the management of term and preterm labor. J. Soc. Gynecol. Investig. 9:265–275, 2002.PubMedCrossRefGoogle Scholar
  13. 13.
    Harkness, M. L., and R. D. Harkness. Changes in the physical properties of the uterine cervix of the rat during pregnancy. J. Physiol. 148:524–547, 1959.PubMedGoogle Scholar
  14. 14.
    Hellemans, P., J. Gerris, and P. Verdonk. Fetal fibronectin detection for prediction of preterm birth in low risk women. BJOG 102:207–212, 1995.CrossRefGoogle Scholar
  15. 15.
    House, M., D. L. Kaplan, and S. Socrate. Relationships between mechanical properties and extracellular matrix constituents of the cervical stroma during pregnancy. Semin. Perinatol. 33:300–307, 2009.PubMedCrossRefGoogle Scholar
  16. 16.
    Ji, H., T. L. Dailey, V. Long, and E. K. Chien. Prostaglandin E2-regulated cervical ripening: analysis of proteoglycan expression in the rat cervix. Am. J. Obstet. Gynecol. 198(536):e1–e7, 2008.Google Scholar
  17. 17.
    Jokhi, R., B. Brown, and D. Anumba. The role of cervical Electrical Impedance Spectroscopy in the prediction of the course and outcome of induced labour. BMC Pregnancy Childbirth 9:40, 2009.PubMedCrossRefGoogle Scholar
  18. 18.
    Junqueira, L. C., M. Zugaib, G. S. Montes, O. M. Toledo, R. M. Krisztan, and K. M. Shigihara. Morphologic and histochemical evidence for the occurrence of collagenolysis and for the role of neutrophilic polymorphonuclear leukocytes during cervical dilation. Am. J. Obstet. Gynecol. 138:273–281, 1980.PubMedGoogle Scholar
  19. 19.
    Kamel, R. M. The onset of human parturition. Arch. Gynecol. Obstet. 281:975–982, 2010.PubMedCrossRefGoogle Scholar
  20. 20.
    Kanter, E. M., S. Majumder, G. J. Kanter, E. M. Woeste, and A. Mahadevan-Jansen. Effect of hormonal variation on Raman spectra for cervical disease detection. Am. J. Obstet. Gynecol. 200(512):e1–e5, 2009.PubMedGoogle Scholar
  21. 21.
    Kanter, E. M., E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen. Application of Raman spectroscopy for cervical dysplasia diagnosis. J. Biophotonics 2:81–90, 2009.PubMedCrossRefGoogle Scholar
  22. 22.
    Krishnapuram, B., L. Carin, M. A. Figueiredo, and A. J. Hartemink. Sparse multinomial logistic regression: fast algorithms and generalization bounds. IEEE Trans. Pattern Anal. Mach. Intell. 27:957–968, 2005.PubMedCrossRefGoogle Scholar
  23. 23.
    Kuon, R. J., S. Q. Shi, H. Maul, C. Sohn, J. Balducci, L. Shi, and R. E. Garfield. A novel optical method to assess cervical changes during pregnancy and use to evaluate the effects of progestins on term and preterm labor. Am. J. Obstet. Gynecol. 205:82.e15–82.e20 (2011).Google Scholar
  24. 24.
    Leppert, P. C. Anatomy and physiology of cervical ripening. Clin. Obstet. Gynecol. 38:267, 1995.PubMedCrossRefGoogle Scholar
  25. 25.
    Lieber, C. A., and A. Mahadevan-Jansen. Automated method for subtraction of fluorescence from biological Raman spectra. Appl. Spectrosc. 57:1363–1367, 2003.PubMedCrossRefGoogle Scholar
  26. 26.
    Lim, K.-H., S. Salahuddin, L. Qiu, H. Fang, E. Vitkin, I. C. Ghiran, M. D. Modell, T. Takoudes, I. Itzkan, E. B. Hanlon, B. P. Sachs, and L. T. Perelman. Light-scattering spectroscopy differentiates fetal from adult nucleated red blood cells: may lead to noninvasive prenatal diagnosis. Opt. Lett. 34:1483, 2009.Google Scholar
  27. 27.
    McColl, I. H., E. W. Blanch, L. Hecht, N. R. Kallenbach, and L. D. Barron. Vibrational Raman optical activity characterization of poly(l-proline) II helix in alanine oligopeptides. J. Am. Chem. Soc. 126:5076–5077, 2004.PubMedCrossRefGoogle Scholar
  28. 28.
    Miura, T., and G. Thomas, Jr. Raman spectroscopy of proteins and their assemblies. Subcell. Biochem. 24:55, 1995.PubMedGoogle Scholar
  29. 29.
    Nathanielsz, P. W. Life Before Birth: The Challenges of Fetal Development. New York: W.H. Freeman, 1996.Google Scholar
  30. 30.
    Nelson, J., L. Felicio, P. Randall, C. Sims, and C. Finch. A longitudinal study of estrous cyclicity in aging C57BL/6J mice: I. Cycle frequency, length and vaginal cytology. Biol. Reprod. 27:327–339, 1982.PubMedCrossRefGoogle Scholar
  31. 31.
    Palejwala, S., D. E. Stein, G. Weiss, B. P. Monia, D. Tortoriello, and L. T. Goldsmith. Relaxin positively regulates matrix metalloproteinase expression in human lower uterine segment fibroblasts using a tyrosine kinase signaling pathway. Endocrinology 142:3405–3413, 2001.PubMedCrossRefGoogle Scholar
  32. 32.
    Polettini, J., J. Peraçoli, J. Candeias, J. Araújo Júnior, and M. Silva. Inflammatory cytokine mRNA detection by real time PCR in chorioamniotic membranes from pregnant women with preterm premature rupture of membranes. Eur. J. Obstet. Gynecol. Reprod. Biol. 144:27–31, 2009.PubMedCrossRefGoogle Scholar
  33. 33.
    Puskas, J. E., and Y. Chen. Biomedical application of commercial polymers and novel polyisobutylene-based thermoplastic elastomers for soft tissue replacement. Biomacromolecules 5:1141–1154, 2004.PubMedCrossRefGoogle Scholar
  34. 34.
    Read, C. P., R. Word, M. A. Ruscheinsky, B. C. Timmons, and M. S. Mahendroo. Cervical remodeling during pregnancy and parturition: molecular characterization of the softening phase in mice. Reproduction 134:327, 2007.PubMedCrossRefGoogle Scholar
  35. 35.
    Reinwald, S., Y. Li, T. Moriguchi, N. Salem, and B. A. Watkins. Repletion with (n−3) fatty acids reverses bone structural deficits in (n−3)-deficient rats. J. Nutr. 134:388–394, 2004.PubMedGoogle Scholar
  36. 36.
    Robichaux-Viehoever, A., E. Kanter, H. Shappell, D. Billheimer, H. Jones III, and A. Mahadevan-Jansen. Characterization of Raman Spectra measured in vivo for the detection of cervical dysplasia. Appl. Spectrosc. 61:986–993, 2007.Google Scholar
  37. 37.
    Sennström, M. K. B., A. Brauner, Y. Lu, L. M. M. Granström, A. L. Malmström, and G. E. Ekman. Interleukin-8 is a mediator of the final cervical ripening in humans. Eur. J. Obstet. Gynecol. Reprod. Biol. 74:89–92, 1997.PubMedCrossRefGoogle Scholar
  38. 38.
    Sugano, T., H. Narahara, K. Nasu, K. Arima, K. Fujisawa, and I. Miyakawa. Effects of platelet-activating factor on cytokine production by human uterine cervical fibroblasts. Mol. Hum. Reprod. 7:475, 2001.PubMedCrossRefGoogle Scholar
  39. 39.
    Sultana, R. R., S. N. Zafarullah, and N. H. Kirubamani. Saliva signature of normal pregnant women in each trimester as analyzed by FTIR spectroscopy. Indian J. Sci. Technol. 4:477–480, 2011.Google Scholar
  40. 40.
    Suzuki, T., C. Mori, H. Yoshikawa, Y. Miyazaki, N. Kansaku, K. Tanaka, H. Morita, and T. Takizawa. Changes in nitric oxide production levels and expression of nitric oxide synthase isoforms in the rat uterus during pregnancy. Biosci. Biotechnol. Biochem. 73:2163–2166, 2009.Google Scholar
  41. 41.
    Vargis, E., T. Byrd, Q. Logan, D. Khabele, and A. Mahadevan-Jansen. Sensitivity of Raman spectroscopy to normal patient variability. J. Biomed. Opt. 16:117004-1–117004-9, 2011.CrossRefGoogle Scholar
  42. 42.
    Vargis, E., E. M. Kanter, S. K. Majumder, M. D. Keller, R. B. Beaven, G. G. Rao, and A. Mahadevan-Jansen. Effect of normal variations on disease classification of Raman spectra from cervical tissue. Analyst 139:2981–2987, 2011.Google Scholar
  43. 43.
    Wang, Y. N., C. Galiotis, and D. Bader. Determination of molecular changes in soft tissues under strain using laser Raman microscopy. J. Biomech. 33:483–486, 2000.PubMedCrossRefGoogle Scholar
  44. 44.
    Yu, S. Y., C. A. Tozzi, J. Babiarz, and P. C. Leppert. Collagen changes in rat cervix in pregnancy-polarized light microscopic and electron microscopic studies. Exp. Biol. Med. 209:360, 1995.Google Scholar
  45. 45.
    Zhao, L., P. J. Roche, J. M. Gunnersen, V. E. Hammond, G. W. Tregear, E. M. Wintour, and F. Beck. Mice without a functional relaxin gene are unable to deliver milk to their pups. Endocrinology 140:445, 1999.PubMedCrossRefGoogle Scholar
  46. 46.
    Zhao, L., C. S. Samuel, G. W. Tregear, F. Beck, and E. M. Wintour. Collagen studies in late pregnant relaxin null mice. Biol. Reprod. 63:697–703, 2000.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Elizabeth Vargis
    • 1
  • Naoko Brown
    • 2
  • Kent Williams
    • 3
  • Ayman Al-Hendy
    • 4
  • Bibhash C. Paria
    • 2
  • Jeff Reese
    • 2
  • Anita Mahadevan-Jansen
    • 1
  1. 1.Department of Biomedical EngineeringVanderbilt UniversityNashvilleUSA
  2. 2.Division of NeonatologyVanderbilt University Medical CenterNashvilleUSA
  3. 3.Department of GastroenterologyNationwide Children’s HospitalColumbusUSA
  4. 4.Department of Obstetrics and GynecologyMeharry Medical CollegeNashvilleUSA

Personalised recommendations