Skip to main content

Advertisement

Log in

Multi-scale Structural and Tensile Mechanical Response of Annulus Fibrosus to Osmotic Loading

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study investigates differential multi-scale structure and function relationships of the outer and inner annulus fibrosus (AF) to osmotic swelling in different buffer solutions by quantifying tensile mechanics, glycoasaminoglycan (GAG) content, water content and tissue swelling, and collagen fibril ultrastructure. In the outer AF, the tensile modulus decreased by over 70% with 0.15 M PBS treatment but was unchanged with 2 M PBS treatment. Moreover, the modulus loss following 0.15 M PBS treatment was reversed when followed by 2 M PBS treatment, potentially from increased interfibrillar and interlamellar shearing associated with fibril swelling. In contrast, the inner AF tensile modulus was unchanged by 0.15 M PBS treatment and increased following 2 M treatment. Transmission electron microscopy revealed that the mean collagen fibril diameters of the untreated outer and inner AF were 87.8 ± 27.9 and 71.0 ± 26.9 nm, respectively. In the outer AF, collagen fibril swelling was observed with both 0.15 M and 2 M PBS treatments, but inherently low GAG content remained unchanged. In the inner AF, 2 M PBS treatment caused fibril swelling and GAG loss, suggesting that GAG plays a role in maintaining the structure of collagen fibrils leading to modulation of the native tissue mechanical properties. These results demonstrate important regional variations in structure and composition, and their influence on the heterogeneous mechanics of the AF. Moreover, because the composition and structure is altered as a consequence of progressive disk degeneration, quantification of these interactions is critical for study of the AF pathogenesis of degeneration and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Acaroglu, E. R., J. C. Iatridis, L. A. Setton, R. J. Foster, V. C. Mow, and M. Weidenbaum. Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine 20:2690–2701, 1995.

    Article  PubMed  CAS  Google Scholar 

  2. Aladin, D. M. K., K. M. C. Cheung, A. H. W. Ngan, D. Chan, V. Y. L. Leung, C. T. Lim, K. D. K. Luk, and W. W. Lu. Nanostructure of collagen fibrils in human nucleus pulposus and its correlation with macroscale tissue mechanics. J. Orthop. Res. 28:497–502, 2010.

    PubMed  CAS  Google Scholar 

  3. Antoniou, J., T. Steffen, F. Nelson, N. Winterbottom, A. P. Hollander, R. A. Poole, M. Aebi, and M. Alini. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J. Clin. Invest. 98:996–1003, 1996.

    Article  PubMed  CAS  Google Scholar 

  4. Asanbaeva, A., K. Masuda, E. J.-M. A. Thonar, S. M. Klisch, and R. L. Sah. Mechanisms of cartilage growth: modulation of balance between proteoglycan and collagen in vitro using chondroitinase ABC. Arthritis Rheum. 56:188–198, 2007.

    Article  PubMed  CAS  Google Scholar 

  5. Asanbaeva, A., K. Masuda, E. J.-M. A. Thonar, S. M. Klisch, and R. L. Sah. Cartilage growth and remodeling: modulation of balance between proteoglycan and collagen network in vitro with beta-aminopropionitrile. Osteoarthr. Cartil. 16:1–11, 2008.

    Article  PubMed  CAS  Google Scholar 

  6. Ateshian, G. A. The role of interstitial fluid pressurization in articular cartilage lubrication. J. Biomech. 42:1163–1176, 2009.

    Article  PubMed  Google Scholar 

  7. Atkinson, T. S., B. J. Ewers, and R. C. Haut. The tensile and stress relaxation responses of human patellar tendon varies with specimen cross-sectional area. J. Biomech. 32:907–914, 1999.

    Article  PubMed  CAS  Google Scholar 

  8. Bailey, A. J., R. G. Paul, and L. Knott. Mechanisms of maturation and ageing of collagen. Mech. Ageing Dev. 106:1–56, 1998.

    Article  PubMed  CAS  Google Scholar 

  9. Beckstein, J. C., S. Sen, T. P. Schaer, E. J. Vresilovic, and D. M. Elliott. Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content. Spine 33:E166–E173, 2008.

    Article  PubMed  Google Scholar 

  10. Brüel, A., G. Ortoft, and H. Oxlund. Inhibition of cross-links in collagen is associated with reduced stiffness of the aorta in young rats. Atherosclerosis 140:135–145, 1998.

    Article  PubMed  Google Scholar 

  11. Buehler, M. J. Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. J. Mech. Behav. Biomed. Mater. 1:59–67, 2008.

    Article  PubMed  Google Scholar 

  12. Buehler, M. J., and S. Y. Wong. Entropic elasticity controls nanomechanics of single tropocollagen molecules. Biophys. J. 93:37–43, 2007.

    Article  PubMed  CAS  Google Scholar 

  13. Cassidy, J. J., A. Hiltner, and E. Baer. Hierarchical structure of the intervertebral disc. Connect. Tissue Res. 23:75–88, 1989.

    Article  PubMed  CAS  Google Scholar 

  14. Chimich, D., N. Shrive, C. Frank, L. Marchuk, and R. Bray. Water content alters viscoelastic behaviour of the normal adolescent rabbit medial collateral ligament. J. Biomech. 25:831–837, 1992.

    Article  PubMed  CAS  Google Scholar 

  15. Elliott, D. M., and L. A. Setton. Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions. J. Biomech. Eng. 123:256–263, 2001.

    Article  PubMed  CAS  Google Scholar 

  16. Eyre, D. R. Biochemistry of the intervertebral disc. Int. Rev. Connect. Tissue Res. 8:227–291, 1979.

    PubMed  CAS  Google Scholar 

  17. Eyre, D. R., and H. Muir. Types I and II collagens in intervertebral disc. Interchanging radial distributions in annulus fibrosus. Biochem. J. 157:267–270, 1976.

    PubMed  CAS  Google Scholar 

  18. Ezura, Y., S. Chakravarti, A. Oldberg, I. Chervoneva, and D. E. Birk. Differential expression of lumican and fibromodulin regulate collagen fibrillogenesis in developing mouse tendons. J. Cell Biol. 151:779–788, 2000.

    Article  PubMed  CAS  Google Scholar 

  19. Götz, W., S. Barnert, R. Bertagnoli, N. Miosge, H. Kresse, and R. Herken. Immunohistochemical localization of the small proteoglycans decorin and biglycan in human intervertebral discs. Cell Tissue Res. 289:185–190, 1997.

    Article  PubMed  Google Scholar 

  20. Grant, C. A., D. J. Brockwell, S. E. Radford, and N. H. Thomson. Tuning the elastic modulus of hydrated collagen fibrils. Biophys. J. 97:2985–2992, 2009.

    Article  PubMed  CAS  Google Scholar 

  21. Guerin, H. L., and D. M. Elliott. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model. J. Orthop. Res. 25:508–516, 2007.

    Article  PubMed  Google Scholar 

  22. Haut, T. L., and R. C. Haut. The state of tissue hydration determines the strain-rate-sensitive stiffness of human patellar tendon. J. Biomech. 30:79–81, 1997.

    Article  PubMed  CAS  Google Scholar 

  23. Haut, R. C., and A. C. Powlison. The effects of test environment and cyclic stretching on the failure properties of human patellar tendons. J. Orthop. Res. 8:532–540, 1990.

    Article  PubMed  CAS  Google Scholar 

  24. Hoffman, A. H., D. R. Robichaud, II, J. J. Duquette, and P. Grigg. Determining the effect of hydration upon the properties of ligaments using pseudo Gaussian stress stimuli. J. Biomech. 38:1636–1642, 2005.

    Article  PubMed  Google Scholar 

  25. Iatridis, J. C., J. J. MacLean, M. O’Brien, and I. A. F. Stokes. Measurements of proteoglycan and water content distribution in human lumbar intervertebral discs. Spine 32:1493–1497, 2007.

    Article  PubMed  Google Scholar 

  26. Iatridis, J. C., J. J. MaClean, and D. A. Ryan. Mechanical damage to the intervertebral disc annulus fibrosus subjected to tensile loading. J. Biomech. 38:557–565, 2005.

    Article  PubMed  Google Scholar 

  27. Inkinen, R. I., M. J. Lammi, U. Agren, R. Tammi, K. Puustjärvi, and M. I. Tammi. Hyaluronan distribution in the human and canine intervertebral disc and cartilage endplate. Histochem. J. 31:579–587, 1999.

    Article  PubMed  CAS  Google Scholar 

  28. Jacobs, N. T., L. J. Smith, W. M. Han, J. Morelli, J. H. Yoder, and D. M. Elliott. Effect of orientation and targeted extracellular matrix degradation on the shear mechanical properties of the annulus fibrosus. J. Mech. Behav. Biomed. Mater. 4:1611–1619, 2011.

    Article  PubMed  CAS  Google Scholar 

  29. Lujan, T. J., C. J. Underwood, N. T. Jacobs, and J. A. Weiss. Contribution of glycosaminoglycans to viscoelastic tensile behavior of human ligament. J. Appl. Physiol. 106:423–431, 2009.

    Article  PubMed  Google Scholar 

  30. Maroudas, A., I. Ziv, N. Weisman, and M. Venn. Studies of hydration and swelling pressure in normal and osteoarthritic cartilage. Biorheology 22:159–169, 1985.

    PubMed  CAS  Google Scholar 

  31. Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J. Biomech. Eng. 102:73–84, 1980.

    Article  PubMed  CAS  Google Scholar 

  32. Natoli, R. M., D. J. Responte, B. Y. Lu, and K. A. Athanasiou. Effects of multiple chondroitinase ABC applications on tissue engineered articular cartilage. J. Orthop. Res. 27:949–956, 2009.

    Article  PubMed  CAS  Google Scholar 

  33. Natoli, R. M., C. M. Revell, and K. A. Athanasiou. Chondroitinase ABC treatment results in greater tensile properties of self-assembled tissue-engineered articular cartilage. Tissue Eng. Part A 15:3119–3128, 2009.

    Article  PubMed  CAS  Google Scholar 

  34. Nerurkar, N. L., W. Han, R. L. Mauck, and D. M. Elliott. Homologous structure-function relationships between native fibrocartilage and tissue engineered from MSC-seeded nanofibrous scaffolds. Biomaterials 32:461–468, 2011.

    Article  PubMed  CAS  Google Scholar 

  35. O’Connell, G. D., E. J. Vresilovic, and D. M. Elliott. Comparison of animals used in disc research to human lumbar disc geometry. Spine 32:328–333, 2007.

    Article  PubMed  Google Scholar 

  36. Panagiotacopulos, N. D., W. G. Knauss, and R. Bloch. On the mechanical properties of human intervertebral disc material. Biorheology 16:317–330, 1979.

    PubMed  CAS  Google Scholar 

  37. Pearce, R. H., B. J. Grimmer, and M. E. Adams. Degeneration and the chemical composition of the human lumbar intervertebral disc. J. Orthop. Res. 5:198–205, 1987.

    Article  PubMed  CAS  Google Scholar 

  38. Peltz, C. D., S. M. Perry, C. L. Getz, and L. J. Soslowsky. Mechanical properties of the long-head of the biceps tendon are altered in the presence of rotator cuff tears in a rat model. J. Orthop. Res. 27:416–420, 2009.

    Article  PubMed  Google Scholar 

  39. Perie, D. S., J. J. Maclean, J. P. Owen, and J. C. Iatridis. Correlating material properties with tissue composition in enzymatically digested bovine annulus fibrosus and nucleus pulposus tissue. Ann. Biomed. Eng. 34:769–777, 2006.

    Article  PubMed  Google Scholar 

  40. Provenzano, P. P., and R. Vanderby, Jr. Collagen fibril morphology and organization: implications for force transmission in ligament and tendon. Matrix Biol. 25:71–84, 2006.

    Article  PubMed  CAS  Google Scholar 

  41. Roeder, B. A., K. Kokini, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-Harbin. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J. Biomech. Eng. 124:214–222, 2002.

    Article  PubMed  Google Scholar 

  42. Roeder, B. A., K. Kokini, and S. L. Voytik-Harbin. Fibril microstructure affects strain transmission within collagen extracellular matrices. J. Biomech. Eng. 131:031004, 2009.

    Article  PubMed  Google Scholar 

  43. Roughley, P. J., M. Alini, and J. Antoniou. The role of proteoglycans in aging, degeneration and repair of the intervertebral disc. Biochem. Soc. Trans. 30:869–874, 2002.

    Article  PubMed  CAS  Google Scholar 

  44. Roughley, P. J., L. I. Melching, T. F. Heathfield, R. H. Pearce, and J. S. Mort. The structure and degradation of aggrecan in human intervertebral disc. Eur. Spine J. 15(Suppl 3):S326–S332, 2006.

    Article  PubMed  Google Scholar 

  45. Schmidt, M. B., V. C. Mow, L. E. Chun, and D. R. Eyre. Effects of proteoglycan extraction on the tensile behavior of articular cartilage. J. Orthop. Res. 8:353–363, 1990.

    Article  PubMed  CAS  Google Scholar 

  46. Screen, H. R. C., V. H. Chhaya, S. E. Greenwald, D. L. Bader, D. A. Lee, and J. C. Shelton. The influence of swelling and matrix degradation on the microstructural integrity of tendon. Acta Biomater. 2:505–513, 2006.

    Article  PubMed  Google Scholar 

  47. Screen, H. R. C., J. C. Shelton, V. H. Chhaya, M. V. Kayser, D. L. Bader, and D. A. Lee. The influence of noncollagenous matrix components on the micromechanical environment of tendon fascicles. Ann. Biomed. Eng. 33:1090–1099, 2005.

    Article  PubMed  Google Scholar 

  48. Shen, Z. L., M. R. Dodge, H. Kahn, R. Ballarini, and S. J. Eppell. Stress-strain experiments on individual collagen fibrils. Biophys. J. 95:3956–3963, 2008.

    Article  PubMed  CAS  Google Scholar 

  49. Singh, K., K. Masuda, E. J.-M. A. Thonar, H. S. An, and G. Cs-Szabo. Age-related changes in the extracellular matrix of nucleus pulposus and anulus fibrosus of human intervertebral disc. Spine 34:10–16, 2009.

    Article  PubMed  Google Scholar 

  50. Svensson, R. B., T. Hassenkam, C. A. Grant, and S. P. Magnusson. Tensile properties of human collagen fibrils and fascicles are insensitive to environmental salts. Biophys. J. 99:4020–4027, 2010.

    Article  PubMed  CAS  Google Scholar 

  51. Svensson, R. B., T. Hassenkam, P. Hansen, M. Kjaer, and S. P. Magnusson. Tensile force transmission in human patellar tendon fascicles is not mediated by glycosaminoglycans. Connect. Tissue Res. 52:415–421, 2011.

    Article  PubMed  CAS  Google Scholar 

  52. Thornton, G. M., N. G. Shrive, and C. B. Frank. Altering ligament water content affects ligament pre-stress and creep behaviour. J. Orthop. Res. 19:845–851, 2001.

    Article  PubMed  CAS  Google Scholar 

  53. Urban, J. P. G. The role of the physicochemical environment in determining disc cell behaviour. Biochem. Soc. Trans. 30:858–864, 2002.

    Article  PubMed  CAS  Google Scholar 

  54. Viidik, A., C. C. Danielson, and H. Oxlund. On fundamental and phenomenological models, structure and mechanical properties of collagen, elastin and glycosaminoglycan complexes. Biorheology 19:437–451, 1982.

    PubMed  CAS  Google Scholar 

  55. Wiberg, C., A. R. Klatt, R. Wagener, M. Paulsson, J. F. Bateman, D. Heinegård, and M. Mörgelin. Complexes of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen II and aggrecan. J. Biol. Chem. 278:37698–37704, 2003.

    Article  PubMed  CAS  Google Scholar 

  56. Zhang, G., Y. Ezura, I. Chervoneva, P. S. Robinson, D. P. Beason, E. T. Carine, L. J. Soslowsky, R. V. Iozzo, and D. E. Birk. Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J. Cell. Biochem. 98:1436–1449, 2006.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Institutes of Health EB02425 and the Penn Center for Musculoskeletal Disorders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn M. Elliott.

Additional information

Associate Editor Eric M. Darling oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, W.M., Nerurkar, N.L., Smith, L.J. et al. Multi-scale Structural and Tensile Mechanical Response of Annulus Fibrosus to Osmotic Loading. Ann Biomed Eng 40, 1610–1621 (2012). https://doi.org/10.1007/s10439-012-0525-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0525-4

Keywords

Navigation