Annals of Biomedical Engineering

, Volume 40, Issue 7, pp 1455–1467 | Cite as

On the In Vivo Deformation of the Mitral Valve Anterior Leaflet: Effects of Annular Geometry and Referential Configuration

  • Rouzbeh Amini
  • Chad E. Eckert
  • Kevin Koomalsingh
  • Jeremy McGarvey
  • Masahito Minakawa
  • Joseph H. Gorman
  • Robert C. Gorman
  • Michael S. SacksEmail author


Alteration of the native mitral valve (MV) shape has been hypothesized to have a profound effect on the local tissue stress distribution, and is potentially linked to limitations in repair durability. The present study was undertaken to elucidate the relation between MV annular shape and central mitral valve anterior leaflet (MVAL) strain history, using flat annuloplasty in an ovine model. In addition, we report for the first time the presence of residual in vivo leaflet strains. In vivo leaflet deformations were measured using sonocrystal transducers sutured to the MVAL (n = 10), with the 3D positions acquired over the full cardiac cycle. In six animals a flat ring was sutured to the annulus and the transducer positions recorded, while in the remaining four the MV was excised from the exsanguinated heart and the stress-free transducer positions obtained. In the central region of the MVAL the peak stretch values, referenced to the minimum left ventricular pressure (LVP), were 1.10 ± 0.01 and 1.31 ± 0.03 (mean ± standard error) in the circumferential and radial directions, respectively. Following flat ring annuloplasty, the central MVAL contracted 28% circumferentially and elongated 16% radially at minimum LVP, and the circumferential direction was under a negative strain state during the entire cardiac cycle. After valve excision from the exsanguinated heart, the MVAL contracted significantly (18 and 30% in the circumferential and radial directions, respectively), indicating the presence of substantial in vivo residual strains. While the physiological function of the residual strains (and their associated stresses) are at present unknown, accounting for their presence is clearly necessary for accurate computational simulations of MV function. Moreover, we demonstrated that changes in annular geometry dramatically alter valvular functional strains in vivo. As levels of homeostatic strains are related to tissue remodeling and homeostasis, our results suggest that surgically introduced alterations in MV shape could lead to the long term MV mechanobiological and microstructural alterations that could ultimately affect MV repair durability.


Flat ring annuloplasty Repair surgery Stress-free state 



This research project was supported in part by grants from the National Heart, Lung and Blood Institute of the National Institute of Health, grant numbers F32HL110651, HL63954, and HL73021. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Heart, Lung and Blood Institute of the National Institute of Health. R. Gorman and J. Gorman are supported by individual Established Investigator Awards from the American Heart Association, Dallas, TX. The help from Christopher Caruthers is much appreciated.


  1. 1.
    Adams, D. H., R. Rosenhek, and V. Falk. Degenerative mitral valve regurgitation: best practice revolution. Eur. Heart J. 31(16):1958–1966, 2010.PubMedCrossRefGoogle Scholar
  2. 2.
    Barber, J. E., F. K. Kasper, N. B. Ratliff, D. M. Cosgrove, B. P. Griffin, and I. Vesely. Mechanical properties of myxomatous mitral valves. J. Thorac. Cardiovasc. Surg. 122(5):955–962, 2001.PubMedCrossRefGoogle Scholar
  3. 3.
    Bothe, W., E. Kuhl, J. P. Kvitting, M. K. Rausch, S. Goktepe, J. C. Swanson, S. Farahmandnia, N. B. Ingels, Jr., and D. C. Miller. Rigid, complete annuloplasty rings increase anterior mitral leaflet strains in the normal beating ovine heart. Circulation 124(11 Suppl):S81–S96, 2011.PubMedCrossRefGoogle Scholar
  4. 4.
    Bothe, W., J. P. Kvitting, J. C. Swanson, S. Hartnett, N. B. Ingels, Jr., and D. C. Miller. Effects of different annuloplasty rings on anterior mitral leaflet dimensions. J. Thorac. Cardiovasc. Surg. 139(5):1114–1122, 2010.PubMedCrossRefGoogle Scholar
  5. 5.
    Braunberger, E., A. Deloche, A. Berrebi, F. Abdallah, J. A. Celestin, P. Meimoun, G. Chatellier, S. Chauvaud, J. N. Fabiani, and A. Carpentier. Very long-term results (more than 20 years) of valve repair with carpentier’s techniques in nonrheumatic mitral valve insufficiency. Circulation 104(12 Suppl 1):I8–I11, 2001.PubMedGoogle Scholar
  6. 6.
    Camp, R. J., M. Liles, J. Beale, N. Saeidi, B. P. Flynn, E. Moore, S. K. Murthy, and J. W. Ruberti. Molecular mechanochemistry: low force switch slows enzymatic cleavage of human type I collagen monomer. J. Am. Chem. Soc. 133(11):4073–4078, 2011.PubMedCrossRefGoogle Scholar
  7. 7.
    Carpentier, A. Cardiac valve surgery—the “French correction”. J. Thorac. Cardiovasc. Surg. 86(3):323–337, 1983.PubMedGoogle Scholar
  8. 8.
    Carpentier, A. F., A. Lessana, J. Y. Relland, E. Belli, S. Mihaileanu, A. J. Berrebi, E. Palsky, and D. F. Loulmet. The “physio-ring”: an advanced concept in mitral valve annuloplasty. Ann. Thorac. Surg. 60(5):1177–1185, 1995; discussion 1185–1186.PubMedCrossRefGoogle Scholar
  9. 9.
    Chuong, C. J., and Y. C. Fung. On residual stress in arteries. J. Biomech. Eng. 108:189–192, 1986.PubMedCrossRefGoogle Scholar
  10. 10.
    Chuong, C. J., and Y. C. Fung. On residual stresses in arteries. J. Biomech. Eng. 108(May):189–192, 1986.PubMedCrossRefGoogle Scholar
  11. 11.
    Chuong, C. J., and Y. C. Fung. Residual stress in arteries. In: Frontiers in Biomechanics, edited by G. Schmid-Schonbein, S. L. Y. Woo, and B. Zweifach. New York: Springer-Verlag, 1986, pp. 117–129.Google Scholar
  12. 12.
    Cohn, L. H., G. S. Couper, S. F. Aranki, R. J. Rizzo, N. M. Kinchla, and J. J. Collins, Jr. Long-term results of mitral valve reconstruction for regurgitation of the myxomatous mitral valve. J. Thorac. Cardiovasc. Surg. 107(1):143–150, 1994; discussion 150–151.PubMedGoogle Scholar
  13. 13.
    David, T. E., S. Armstrong, Z. Sun, and L. Daniel. Late results of mitral valve repair for mitral regurgitation due to degenerative disease. Ann. Thorac. Surg. 56(1):7–12, 1993; discussion 13–14.PubMedCrossRefGoogle Scholar
  14. 14.
    Duplessis, L. A., and P. Marchand. The anatomy of the mitral valve and its associated structures. Thorax 19:221–227, 1964.PubMedCrossRefGoogle Scholar
  15. 15.
    Eckert, C. E., B. Zubiate, M. Vergnat, J. H. Gorman, III, R. C. Gorman, and M. S. Sacks. In vivo dynamic deformation of the mitral valve annulus. Ann. Biomed. Eng. 37(9):1757–1771, 2009.PubMedCrossRefGoogle Scholar
  16. 16.
    Einstein, D. R., F. Del Pin, X. Jiao, A. P. Kuprat, J. P. Carson, K. S. Kunzelman, R. P. Cochran, J. M. Guccione, and M. B. Ratcliffe. Fluid–structure interactions of the mitral valve and left heart: comprehensive strategies, past, present and future. Int. J. Numer. Methods Eng. 26(3–4):348–380, 2010.PubMedGoogle Scholar
  17. 17.
    Einstein, D. R., P. Reinhall, M. Nicosia, R. P. Cochran, and K. Kunzelman. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes. Comput. Methods Biomech. Biomed. Eng. 6(1):33–44, 2003.CrossRefGoogle Scholar
  18. 18.
    Fung, Y. C. What are the residual stresses doing in our blood vessels? Ann. Biomed. Eng. 19(3):237–249, 1991.PubMedCrossRefGoogle Scholar
  19. 19.
    Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag, 1993.Google Scholar
  20. 20.
    Fung, Y. C., and S. Q. Liu. Changes of zero-stress state of rat pulmonary arteries in hypoxic hypertension. J. Appl. Physiol. 70(6):2455–2470, 1991.PubMedGoogle Scholar
  21. 21.
    Gillinov, A. M., E. H. Blackstone, J. White, M. Howard, R. Ahkrass, A. Marullo, and D. M. Cosgrove. Durability of combined aortic and mitral valve repair. Ann. Thorac. Surg. 72(1):20–27, 2001.PubMedCrossRefGoogle Scholar
  22. 22.
    Gillinov, A. M., D. M. Cosgrove, E. H. Blackstone, R. Diaz, J. H. Arnold, B. W. Lytle, N. G. Smedira, J. F. Sabik, P. M. McCarthy, and F. D. Loop. Durability of mitral valve repair for degenerative disease. J. Thorac. Cardiovasc. Surg. 116(5):734–743, 1998.PubMedCrossRefGoogle Scholar
  23. 23.
    Goldsmith, I. R., G. Y. Lip, and R. L. Patel. A prospective study of changes in the quality of life of patients following mitral valve repair and replacement. Eur. J. Cardiothorac. Surg. 20(5):949–955, 2001.PubMedCrossRefGoogle Scholar
  24. 24.
    Gorman, J. H., III, K. B. Gupta, J. T. Streicher, R. C. Gorman, B. M. Jackson, M. B. Ratcliffe, D. K. Bogen, and L. H. Edmunds, Jr. Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J. Thorac. Cardiovasc. Surg. 112(3):712–726, 1996.PubMedCrossRefGoogle Scholar
  25. 25.
    Grashow, J. S., A. P. Yoganathan, and M. S. Sacks. Biaixal stress–stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann. Biomed. Eng. 34(2):315–325, 2006.PubMedCrossRefGoogle Scholar
  26. 26.
    Hashima, A. R., A. A. Young, A. D. McCulloch, and L. K. Waldman. Nonhomogeneous analysis of epicardial strain distributions during acute myocardial ischemia in the dog. J. Biomech. 26:19–35, 1993.PubMedCrossRefGoogle Scholar
  27. 27.
    He, Z., J. Ritchie, J. S. Grashow, M. S. Sacks, and A. P. Yoganathan. In vitro dynamic strain behavior of the mitral valve posterior leaflet. J. Biomech. Eng. 127(3):504–511, 2005.PubMedCrossRefGoogle Scholar
  28. 28.
    Itoh, A., G. Krishnamurthy, J. C. Swanson, D. B. Ennis, W. Bothe, E. Kuhl, M. Karlsson, L. R. Davis, D. C. Miller, and N. B. Ingels, Jr. Active stiffening of mitral valve leaflets in the beating heart. Am. J. Physiol. Heart Circ. Physiol. 296(6):H1766–H1773, 2009.PubMedCrossRefGoogle Scholar
  29. 29.
    Jimenez, J. H., S. W. Liou, M. Padala, Z. He, M. Sacks, R. C. Gorman, J. H. Gorman, III, and A. P. Yoganathan. A saddle-shaped annulus reduces systolic strain on the central region of the mitral valve anterior leaflet. J. Thorac. Cardiovasc. Surg. 134(6):1562–1568, 2007.PubMedCrossRefGoogle Scholar
  30. 30.
    Kaplan, S. R., G. Bashein, F. H. Sheehan, M. E. Legget, B. Munt, X. N. Li, M. Sivarajan, E. L. Bolson, M. Zeppa, M. Z. Arch, and R. W. Martin. Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am. Heart J. 139(3):378–387, 2000.PubMedCrossRefGoogle Scholar
  31. 31.
    Komeda, M., J. R. Glasson, A. F. Bolger, G. T. Daughters, 2nd, A. MacIsaac, S. N. Oesterle, N. B. Ingels, Jr., and D. C. Miller. Geometric determinants of ischemic mitral regurgitation. Circulation 96(9 Suppl):II-128–II-133, 1997.Google Scholar
  32. 32.
    Krishnamurthy, G., D. B. Ennis, A. Itoh, W. Bothe, J. C. Swanson, M. Karlsson, E. Kuhl, D. C. Miller, and N. B. Ingels, Jr. Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis. Am. J. Physiol. Heart Circ. Physiol. 295(3):H1141–H1149, 2008.PubMedCrossRefGoogle Scholar
  33. 33.
    Krishnamurthy, G., A. Itoh, W. Bothe, J. C. Swanson, E. Kuhl, M. Karlsson, D. Craig Miller, and N. B. Ingels, Jr. Stress–strain behavior of mitral valve leaflets in the beating ovine heart. J. Biomech. 42(12):1909–1916, 2009.PubMedCrossRefGoogle Scholar
  34. 34.
    Krishnamurthy, G., A. Itoh, J. C. Swanson, W. Bothe, M. Karlsson, E. Kuhl, D. Craig Miller, and N. B. Ingels, Jr. Regional stiffening of the mitral valve anterior leaflet in the beating ovine heart. J. Biomech. 42(16):2697–2701, 2009.PubMedCrossRefGoogle Scholar
  35. 35.
    Krishnamurthy, G., A. Itoh, J. C. Swanson, D. C. Miller, and N. B. Ingels, Jr. Transient stiffening of mitral valve leaflets in the beating heart. Am. J. Physiol. Heart Circ. Physiol. 298(6):H2221–H2225, 2010.PubMedCrossRefGoogle Scholar
  36. 36.
    Kunzelman, K. S., R. P. Cochran, E. D. Verrier, and R. C. Eberhart. Anatomic basis for mitral valve modelling. J. Heart Valve Dis. 3(5):491–496, 1994.PubMedGoogle Scholar
  37. 37.
    Kunzelman, K. S., D. W. Quick, and R. P. Cochran. Altered collagen concentration in mitral valve leaflets: biochemical and finite element analysis. Ann. Thorac. Surg. 66(6 Suppl):S198–S205, 1998.PubMedCrossRefGoogle Scholar
  38. 38.
    Kvitting, J. P., W. Bothe, S. Goktepe, M. K. Rausch, J. C. Swanson, E. Kuhl, N. B. Ingels, Jr., and D. C. Miller. Anterior mitral leaflet curvature during the cardiac cycle in the normal ovine heart. Circulation 122(17):1683–1689, 2010.PubMedCrossRefGoogle Scholar
  39. 39.
    Levine, R. A., M. D. Handschumacher, A. J. Sanfilippo, A. A. Hagege, P. Harrigan, J. E. Marshall, and A. E. Weyman. Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation 80(3):589–598, 1989.PubMedCrossRefGoogle Scholar
  40. 40.
    Liao, J., L. Yang, J. Grashow, and M. S. Sacks. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. J. Biomech. Eng. 129(1):78–87, 2007.PubMedCrossRefGoogle Scholar
  41. 41.
    Liu, S. Q., and Y. C. Fung. Relationship between hypertension, hypertrophy, and opening angle of zero-stress state of arteries following aortic constriction. J. Biomech. Eng. 111(4):325–335, 1989.PubMedCrossRefGoogle Scholar
  42. 42.
    Mahmood, F., J. H. Gorman, III, B. Subramaniam, R. C. Gorman, P. J. Panzica, R. C. Hagberg, A. B. Lerner, P. E. Hess, A. Maslow, and K. R. Khabbaz. Changes in mitral valve annular geometry after repair: saddle-shaped versus flat annuloplasty rings. Ann. Thorac. Surg. 90(4):1212–1220, 2010.PubMedCrossRefGoogle Scholar
  43. 43.
    Mahmood, F., B. Subramaniam, J. H. Gorman, III, R. M. Levine, R. C. Gorman, A. Maslow, P. J. Panzica, R. M. Hagberg, S. Karthik, and K. R. Khabbaz. Three-dimensional echocardiographic assessment of changes in mitral valve geometry after valve repair. Ann. Thorac. Surg. 88(6):1838–1844, 2009.PubMedCrossRefGoogle Scholar
  44. 44.
    May-Newman, K., and F. C. Yin. Biaxial mechanical behavior of excised porcine mitral valve leaflets. Am. J. Physiol. 269(4 Pt 2):H1319–H1327, 1995.PubMedGoogle Scholar
  45. 45.
    Merryman, W. D., I. Youn, H. D. Lukoff, P. M. Krueger, F. Guilak, R. A. Hopkins, and M. S. Sacks. Correlation between heart valve interstitial cell stiffness and transvalvular pressure: implications for collagen biosynthesis. Am. J. Physiol. Heart Circ. Physiol. 290(1):H224–H231, 2006.PubMedCrossRefGoogle Scholar
  46. 46.
    Nowicki, E. R., R. W. Weintraub, N. J. Birkmeyer, J. H. Sanders, L. J. Dacey, S. J. Lahey, B. Leavitt, R. A. Clough, R. D. Quinn, and G. T. O’Connor. Mitral valve repair and replacement in northern New England. Am Heart J 145(6):1058–1062, 2003.PubMedCrossRefGoogle Scholar
  47. 47.
    Padala, M., R. A. Hutchison, L. R. Croft, J. H. Jimenez, R. C. Gorman, J. H. Gorman, III, M. S. Sacks, and A. P. Yoganathan. Saddle shape of the mitral annulus reduces systolic strains on the P2 segment of the posterior mitral leaflet. Ann. Thorac. Surg. 88(5):1499–1504, 2009.PubMedCrossRefGoogle Scholar
  48. 48.
    Padala, M., M. S. Sacks, S. W. Liou, K. Balachandran, Z. He, and A. P. Yoganathan. Mechanics of the mitral valve strut chordae insertion region. J. Biomech. Eng. 132(8):081004, 2010.PubMedCrossRefGoogle Scholar
  49. 49.
    Perier, P., A. Deloche, S. Chauvaud, J. N. Fabiani, P. Rossant, J. P. Bessou, J. Relland, H. Bourezak, F. Gomez, P. Blondeau, et al. Comparative evaluation of mitral valve repair and replacement with Starr, Bjork, and porcine valve prostheses. Circulation 70(3 Pt 2):I187–I192, 1984.PubMedGoogle Scholar
  50. 50.
    Prot, V., B. Skallerud, G. Sommer, and G. A. Holzapfel. On modelling and analysis of healthy and pathological human mitral valves: two case studies. J. Mech. Behav. Biomed. Mater. 3(2):167–177, 2010.PubMedCrossRefGoogle Scholar
  51. 51.
    Quick, D. W., K. S. Kunzelman, J. M. Kneebone, and R. P. Cochran. Collagen synthesis is upregulated in mitral valves subjected to altered stress. ASAIO J. 43(3):181–186, 1997.PubMedGoogle Scholar
  52. 52.
    Rausch, M. K., W. Bothe, J. P. Kvitting, S. Goktepe, D. C. Miller, and E. Kuhl. In vivo dynamic strains of the ovine anterior mitral valve leaflet. J. Biomech. 44(6):1149–1157, 2011.PubMedCrossRefGoogle Scholar
  53. 53.
    Rodriguez, E. K., A. Hoger, and A. D. McCulloch. Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4):455–467, 1994.PubMedCrossRefGoogle Scholar
  54. 54.
    Ryan, L. P., B. M. Jackson, H. Hamamoto, T. J. Eperjesi, T. J. Plappert, M. St John-Sutton, R. C. Gorman, and J. H. Gorman, III. The influence of annuloplasty ring geometry on mitral leaflet curvature. Ann. Thorac. Surg. 86(3):749–760, 2008; discussion 749–760.PubMedCrossRefGoogle Scholar
  55. 55.
    Sacks, M. S., W. David Merryman, and D. E. Schmidt. On the biomechanics of heart valve function. J. Biomech. 42(12):1804–1824, 2009.PubMedCrossRefGoogle Scholar
  56. 56.
    Sacks, M. S., Y. Enomoto, J. R. Graybill, W. D. Merryman, A. Zeeshan, A. P. Yoganathan, R. J. Levy, R. C. Gorman, and J. H. Gorman, III. In vivo dynamic deformation of the mitral valve anterior leaflet. Ann. Thorac. Surg. 82(4):1369–1377, 2006.PubMedCrossRefGoogle Scholar
  57. 57.
    Sacks, M. S., H. Hamamoto, J. M. Connolly, R. C. Gorman, J. H. Gorman, III, and R. J. Levy. In vivo biomechanical assessment of triglycidylamine crosslinked pericardium. Biomaterials 28(35):5390–5398, 2007.PubMedCrossRefGoogle Scholar
  58. 58.
    Sacks, M. S., Z. He, L. Baijens, S. Wanant, P. Shah, H. Sugimoto, and A. P. Yoganathan. Surface strains in the anterior leaflet of the functioning mitral valve. Ann. Biomed. Eng. 30(10):1281–1290, 2002.PubMedCrossRefGoogle Scholar
  59. 59.
    Salgo, I. S., J. H. Gorman, III, R. C. Gorman, B. M. Jackson, F. W. Bowen, T. Plappert, M. G. St. John Sutton, and L. H. Edmunds, Jr. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106(6):711–717, 2002.PubMedCrossRefGoogle Scholar
  60. 60.
    Smith, D. B., M. S. Sacks, D. A. Vorp, and M. Thornton. Surface geometric analysis of anatomic structures using biquintic finite element interpolation. Ann. Biomed. Eng. 28(6):598–611, 2000.PubMedCrossRefGoogle Scholar
  61. 61.
    Stella, J. A., and M. S. Sacks. On the biaxial mechanical properties of the layers of the aortic valve leaflet. J. Biomech. Eng. 129(5):757–766, 2007.PubMedCrossRefGoogle Scholar
  62. 62.
    Stephens, E. H., T. C. Nguyen, A. Itoh, N. B. Ingels, Jr., D. C. Miller, and K. J. Grande-Allen. The effects of mitral regurgitation alone are sufficient for leaflet remodeling. Circulation 118(14 Suppl):S243–S249, 2008.PubMedCrossRefGoogle Scholar
  63. 63.
    Stephens, E. H., T. A. Timek, G. T. Daughters, J. J. Kuo, A. M. Patton, L. S. Baggett, N. B. Ingels, D. C. Miller, and K. J. Grande-Allen. Significant changes in mitral valve leaflet matrix composition and turnover with tachycardia-induced cardiomyopathy. Circulation 120(11 Suppl):S112–S119, 2009.PubMedCrossRefGoogle Scholar
  64. 64.
    Taber, L. A. Biomechanics of cardiovascular development. Annu. Rev. Biomed. Eng. 3:1–25, 2001.PubMedCrossRefGoogle Scholar
  65. 65.
    Taber, L. A., and J. D. Humphrey. Stress-modulated growth, residual stress, and vascular heterogeneity. J. Biomech. Eng. 123(6):528–535, 2001.PubMedCrossRefGoogle Scholar
  66. 66.
    Vesely, I., A. Lozon, and E. Talman. Is zero-pressure fixation of bioprosthetic valves truly stress free? J. Thorac. Cardiovasc. Surg. 106(2):288–298, 1993.PubMedGoogle Scholar
  67. 67.
    Vesely, I., and R. Noseworthy. Micromechanics of the fibrosa and the ventricularis in aortic valve leaflets. J. Biomech. 25(1):101–113, 1992.PubMedCrossRefGoogle Scholar
  68. 68.
    Wognum, S., D. E. Schmidt, and M. S. Sacks. On the mechanical role of de novo synthesized elastin in the urinary bladder wall. J. Biomech. Eng. 131(10):101018, 2009.PubMedCrossRefGoogle Scholar
  69. 69.
    Yacoub, M., M. Halim, R. Radley-Smith, R. McKay, A. Nijveld, and M. Towers. Surgical treatment of mitral regurgitation caused by floppy valves: repair versus replacement. Circulation 64(2 Pt. 2):II210–II216, 1981.PubMedGoogle Scholar
  70. 70.
    Zareian, R., K. P. Church, N. Saeidi, B. P. Flynn, J. W. Beale, and J. W. Ruberti. Probing collagen/enzyme mechanochemistry in native tissue with dynamic, enzyme-induced creep. Langmuir 26(12):9917–9926, 2010.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Rouzbeh Amini
    • 1
  • Chad E. Eckert
    • 1
  • Kevin Koomalsingh
    • 2
  • Jeremy McGarvey
    • 2
  • Masahito Minakawa
    • 2
  • Joseph H. Gorman
    • 3
  • Robert C. Gorman
    • 2
  • Michael S. Sacks
    • 1
    • 4
    Email author
  1. 1.Department of BioengineeringUniversity of PittsburghPittsburghUSA
  2. 2.Gorman Cardiovascular Research Group, University of PennsylvaniaPhiladelphiaUSA
  3. 3.Gorman Cardiovascular Research Group, Glenolden Research LaboratoryUniversity of PennsylvaniaGlenoldenUSA
  4. 4.Department of Biomedical EngineeringInstitute for Computational Engineering and Sciences (ICES), University of Texas at AustinAustinUSA

Personalised recommendations