Integrated Microfluidics Platforms for Investigating Injury and Regeneration of CNS Axons

Abstract

We describe the development of experimental platforms to quantify the regeneration of injured central nervous system (CNS) neurons by combining engineering technologies and primary neuronal cultures. Although the regeneration of CNS neurons is an important area of research, there are no currently available methods to screen for drugs. Conventional tissue culture based on Petri dish does not provide controlled microenvironment for the neurons and only provide qualitative information. In this review, we introduced the recent advances to generate in vitro model system that is capable of mimicking the niche of CNS injury and regeneration and also of testing candidate drugs. We reconstructed the microenvironment of the regeneration of CNS neurons after injury to provide as in vivo like model system where the soluble and surface bounded inhibitors for regeneration are presented in physiologically relevant manner using microfluidics and surface patterning methods. The ability to control factors and also to monitor them using live cell imaging allowed us to develop quantitative assays that can be used to compare various drug candidates and also to understand the basic mechanism behind nerve regeneration after injury.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. 1.

    Bourgeois, F., and A. Ben-Yakar. Femtosecond laser nanoaxotomy properties and their effect on axonal recovery in C. elegans. Opt. Express 15:8521–8531, 2007.

    PubMed  Article  Google Scholar 

  2. 2.

    Busch, S. A., and J. Silver. The role of extracellular matrix in CNS regeneration. Curr. Opin. Neurobiol. 17:120–127, 2007.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Campenot, R. B. Local control of neurite development by nerve growth factor. Proc. Natl Acad. Sci. USA. 74:4516–4519, 1977.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Campenot, R. B. Development of sympathetic neurons in compartmentalized cultures. II. Local control of neurite survival by nerve growth factor. Dev. Biol. 93:13–21, 1982.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Caroni, P., and M. E. Schwab. Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1:85–96, 1988.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Crutcher, K. A. Tissue sections from the mature rat brain and spinal cord as substrates for neurite outgrowth in vitro: extensive growth on gray matter but little growth on white matter. Exp. Neurol. 104:39–54, 1989.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    David, S., and A. J. Aquayo. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214:931–933, 1981.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Domeniconi, M., Z. Cao, T. Spencer, R. Sivasankaran, K. Wang, E. Nikulina, N. Kimura, H. Cai, K. Deng, Y. Gao, Z. He, and M. Filbin. Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35:283–290, 2002.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Domeniconi, M., and M. T. Filbin. Overcoming inhibitors in myelin to promote axonal regeneration. J. Neurol. Sci. 233:43–47, 2005.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Fayaz, I., and C. H. Tator. Modeling axonal injury in vitro: injury and regeneration following acute neuritic trauma. J. Neurosci. Methods 102:69–79, 2000.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Filbin, M. T. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat. Rev. Neurosci. 4:703–713, 2003.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Fournier, A. E., T. GrandPre, and S. M. Strittmatter. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409:341–346, 2001.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Hellman, A. N., B. Vahidi, H. J. Kim, W. Mismar, O. Steward, N. L. Jeon, and V. Venugopalan. Examination of axonal injury and regeneration in micropatterned neuronal culture using pulsed laser microbeam dissection. Lab. Chip 10:2083–2092, 2010.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Hengst, U., A. Deglincerti, H. J. Kim, N. L. Jeon, and S. R. Jaffrey. Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein. Nat. Cell Biol. 11:1024–1030, 2009.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Ivins, K. J., E. T. Bui, and C. W. Cotman. Beta-amyloid induces local neurite degeneration in cultured hippocampal neurons: evidence for neuritic apoptosis. Neurobiol. Dis. 5:365–378, 1998.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Jang, K.-J., M. S. Kim, D. Feltrin, N. L. Jeon, K.-Y. Suh, and O. Pertz. Two distinct filopodia populations at the growth cone allow to sense nanotopographical extracellular matrix cues to guide neurite outgrowth. PLoS ONE 5:e15966, 2010.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Jones, L. L., R. U. Margolis, and M. H. Tuszynski. The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp. Neurol. 182:399–411, 2003.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Liu, W. W., J. Goodhouse, N. L. Jeon, and L. W. Enquist. A microfluidic chamber for analysis of neuron-to-cell spread and axonal transport of an alpha-herpesvirus. PLoS ONE 3:e2382, 2008.

    PubMed  Article  Google Scholar 

  19. 19.

    Mandolesi, G., F. Madeddu, Y. Bozzi, L. Maffei, and G. M. Ratto. Acute physiological response of mammalian central neurons to axotomy: ionic regulation and electrical activity. FASEB J. 18:1934–1936, 2004.

    PubMed  CAS  Google Scholar 

  20. 20.

    McKeon, R. J., R. C. Schreiber, J. S. Rudge, and J. Silver. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 11:3398–3411, 1991.

    PubMed  CAS  Google Scholar 

  21. 21.

    McKerracher, L., S. David, D. L. Jackson, V. Kottis, R. J. Dunn, and P. E. Braun. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13:805–811, 1994.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Mukhopadhyay, G., P. Doherty, F. S. Walsh, P. R. Crocker, and M. T. Filbin. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13:757–767, 1994.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Park, J. W., B. Vahidi, H. J. Kim, S. W. Rhee, and N. L. Jeon. Quantitative analysis of CNS axon regeneration using a microfluidic neuron culture device. Biochip J. 2:44–51, 2008.

    Google Scholar 

  24. 24.

    Park, J. W., B. Vahidi, A. M. Taylor, S. W. Rhee, and N. L. Jeon. Microfluidic culture platform for neuroscience research. Nat. Protoc. 1:2128–2136, 2006.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Quilty, M. C., W. P. Gai, D. L. Pountney, A. K. West, and J. C. Vickers. Localization of alpha-, beta-, and gamma-synuclein during neuronal development and alterations associated with the neuronal response to axonal trauma. Exp. Neurol. 182:195–207, 2003.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Rhee, S. W., A. M. Taylor, C. H. Tu, D. H. Cribbs, C. W. Cotman, and N. L. Jeon. Patterned cell culture inside microfluidic devices. Lab. Chip 5:102–107, 2005.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Schwab, M. E., and D. Bartholdi. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol. Rev. 76:319–370, 1996.

    PubMed  CAS  Google Scholar 

  28. 28.

    Silver, J., and J. H. Miller. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5:146–156, 2004.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Taylor, A. M., M. Blurton-Jones, S. W. Rhee, D. H. Cribbs, C. W. Cotman, and N. L. Jeon. A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat. Methods 2:599–605, 2005.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Taylor, A. M., S. W. Rhee, and N. L. Jeon. Microfluidic chambers for cell migration and neuroscience research. Methods Mol. Biol. 321:167–177, 2006.

    PubMed  CAS  Google Scholar 

  31. 31.

    Taylor, A. M., S. W. Rhee, C. H. Tu, D. H. Cribbs, C. W. Cotman, and N. L. Jeon. Microfluidic multicompartment device for neuroscience research. Langmuir 19:1551–1556, 2003.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Tirlapur, U. K., and K. König. Targeted transfection by femtosecond laser. Nature 418:290–291, 2002.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Vahidi, B., J. W. Park, H. J. Kim, and N. L. Jeon. Microfluidic-based strip assay for testing the effects of various surface-bound inhibitors in spinal cord injury. J. Neurosci. Methods 170:188–196, 2008.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Vogel, A., J. Noack, G. Hüttman, and G. Paltauf. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B Lasers Optics 81:1015–1047, 2005.

    Article  CAS  Google Scholar 

  35. 35.

    Yanik, M. F., H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar. Neurosurgery: functional regeneration after laser axotomy. Nature 432:822, 2004.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Yiu, G., and Z. He. Glial inhibition of CNS axon regeneration. Nat. Rev. Neurosci. 7:617–627, 2006.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Graduate Studies Abroad Fellowship (KRF-2005-215-D00030), WCU (World Class University) program through the Korea Research Foundation funded by the Ministry of Education, Science and Technology (R31-2008-000-10083-0), Pioneer Research Center Program (2011-0001643), Biomembrane Plasricity Research Center (2011-0000841) through the National Research Foundation (NRF) funded by the National Research Foundation (NRF) funded by the Ministry of Education, Science and Technology and the Industrial Source Technology Development Program (10033657) of the Ministry of Knowledge Economy (MKE) of Korea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Noo Li Jeon.

Additional information

Associate Editor Jong Hwan Sung oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, H.J., Park, J.W., Park, J.W. et al. Integrated Microfluidics Platforms for Investigating Injury and Regeneration of CNS Axons. Ann Biomed Eng 40, 1268–1276 (2012). https://doi.org/10.1007/s10439-012-0515-6

Download citation

Keywords

  • Microfluidics
  • Spinal cord injury
  • Axonal regeneration