Skip to main content

Advertisement

Log in

Development of a Minimally Invasive, Injectable, Shape Memory Suture and Delivery System

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Suturing in space-confined surgical settings encountered during microsurgical procedures can be technically complex and time intensive. This paper presents the development of a new injector and new shape-memory alloy clip that can replace conventional suture. Engineering and surgical assessments of the injector and clips were performed. A prototype of the delivery system was tested in simulated surgical settings and compared to conventional suturing techniques for surgical time and wound strength. In various micro-surgical scenarios, the new injectable system proved to be 5 to 20-times more efficient and to have wound strengths over three-times that of conventional suturing. Further, the wounds closed by the shape-memory alloy clips could be forced to open and then recover to a watertight state, unlike conventional sutures which break upon failure. This new injector and shape-memory alloy clips proved to be quicker, stronger, and technically easier than conventional suturing. Future work is underway to test the injectable delivery system and the shape-memory alloy clips using a real-time, in vivo porcine model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7

Similar content being viewed by others

References

  1. Albacker, T., A. Al Kindi, and B. de Varennes. Traumatic dehiscence of Medtronic Freestyle stentless bioprosthesis. Ann. Thorac. Surg. 86:643–645, 2008.

    Article  PubMed  Google Scholar 

  2. Alio, J., J. L. Rodriguez-Prats, and A. Galal. Advances in microincision cataract surgery intraocular lenses. Curr. Opin. Ophthalmol. 17:80–93, 2006.

    PubMed  Google Scholar 

  3. Berreklouw, E., S. Leontyev, S. Ossmann, C. Velten, B. Vogel, S. Dhein, and F. W. Mohr. Sutureless mitral valve replacement with bioprostheses and Nitinol attachment rings: feasibility in acute pig experiments. J. Thorac. Cardiovasc. Surg. 142:390–395, e391, 2011.

    Google Scholar 

  4. Congdon, N., J. R. Vingerling, B. E. Klein, S. West, D. S. Friedman, J. Kempen, B. O’Colmain, S. Y. Wu, and H. R. Taylor. Prevalence of cataract and pseudophakia/aphakia among adults in the United States. Arch. Ophthalmol. 122:487–494, 2004.

    Article  PubMed  Google Scholar 

  5. Dogangil, G., B. L. Davies, and F. Rodriguez y Baena. A review of medical robotics for minimally invasive soft tissue surgery. Proc. Inst. Mech. Eng. H 224:653–679, 2010.

    PubMed  CAS  Google Scholar 

  6. Ellwein, L. B., and C. J. Urato. Use of eye care and associated charges among the Medicare population: 1991–1998. Arch. Ophthalmol. 120:804–811, 2002.

    Article  PubMed  Google Scholar 

  7. Foroutan, A. R., G. H. Gheibi, M. Joshaghani, A. Ahadian, and P. Foroutan. Traumatic wound dehiscence and lens extrusion after penetrating keratoplasty. Cornea 28:1097–1099, 2009.

    Article  PubMed  Google Scholar 

  8. Jackson, M., and W. Ahmed. Surface Engineered Surgical Tools and Medical Devices. West Lafayette: Springer, 2007.

    Book  Google Scholar 

  9. Jongebloed, W. L., and J. F. Worst. Degradation of polypropylene in the human eye: a SEM-study. Doc. Ophthalmol. 64:143–152, 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Joshi, P., C. Doshi, M. Vinchurkar, R. Thosani, P. Sagar, and V. Mahajan. Minimally invasive combined aortic and mitral valve replacement. Heart Lung Circ. 20(4):231–233, 2011.

    Article  PubMed  Google Scholar 

  11. Kelman, C. D. Phaco-emulsification and aspiration. A new technique of cataract removal. A preliminary report. Am. J. Ophthalmol. 64:23–35, 1967.

    PubMed  CAS  Google Scholar 

  12. Lavelle, W. F., A. F. Samdani, P. J. Cahill, and R. R. Betz. Clinical outcomes of nitinol staples for preventing curve progression in idiopathic scoliosis. J. Pediatr. Orthop. 31:S107–S113, 2011.

    Article  PubMed  Google Scholar 

  13. Liesegang, T. J. The response of the corneal endothelium to intraocular surgery. Refract. Corneal Surg. 7:81–86, 1991.

    PubMed  CAS  Google Scholar 

  14. Linebarger, E. J., D. R. Hardten, G. K. Shah, and R. L. Lindstrom. Phacoemulsification and modern cataract surgery. Surv. Ophthalmol. 44:123–147, 1999.

    Article  PubMed  CAS  Google Scholar 

  15. Luglio, G., and H. Nelson. Laparoscopy for colon cancer: state of the art. Surg. Oncol. Clin. N. Am. 19:777–791, 2010.

    Article  PubMed  Google Scholar 

  16. Mayer, C., C. Frank, D. Frank, U. Tochtermann, C. Rehnitz, L. Grenacher, S. E. Hardt, H. A. Katus, and D. Mereles. Left atrial wall dissection, mitral valve prosthesis dehiscence and pericardial hematoma: complex findings after successful cardiac resuscitation. Clin. Res. Cardiol. 99:57–58, 2010.

    Article  PubMed  Google Scholar 

  17. Olson, J. L., R. V. Montoya, and M. Erlanger. Ocular biocompatibility of nitinol intraocular clips. Invest. Ophthalmol. Vis. Sci., 2011. doi:10.1167/iovs.11-8496.

  18. Pandya, J. S., S. M. Bhagwat, and S. L. Kini. Evaluation of clinical skills for first-year surgical residents using orientation programme and objective structured clinical evaluation as a tool of assessment. J. Postgrad. Med. 56:297–300, 2010.

    Article  PubMed  CAS  Google Scholar 

  19. Paul, T., and R. Braga-Mele. Bimanual microincisional phacoemulsification: the future of cataract surgery? Curr. Opin. Ophthalmol. 16:2–7, 2005.

    Article  PubMed  Google Scholar 

  20. Price, M. O., F. W. Price, Jr., L. Werner, C. Berlie, and N. Mamalis. Late dislocation of scleral-sutured posterior chamber intraocular lenses. J. Cataract Refract. Surg. 31:1320–1326, 2005.

    Article  PubMed  Google Scholar 

  21. Ridley, H. Intra-ocular acrylic lenses after cataract extraction. Lancet 1:118–121, 1952.

    Article  PubMed  CAS  Google Scholar 

  22. Shabalovskaya, S. A. Surface, corrosion and biocompatibility aspects of Nitinol as an implant material. Biomed. Mater. Eng. 12:69–109, 2002.

    PubMed  CAS  Google Scholar 

  23. Shabalovskaya, S., J. Anderegg, and J. Van Humbeeck. Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomater. 4:447–467, 2008.

    Article  PubMed  CAS  Google Scholar 

  24. Shields, B. (ed.). Shields Textbook of Glaucoma. Philadelphia: Lippincott Williams & Wilkins, 2010.

    Google Scholar 

  25. Spalton, D., and D. Koch. The constant evolution of cataract surgery. BMJ 321:1304, 2000.

    Article  PubMed  CAS  Google Scholar 

  26. Tarnita, D., D. N. Tarnita, N. Bizdoaca, I. Mindrila, and M. Vasilescu. Properties and medical applications of shape memory alloys. Rom. J. Morphol. Embryol. 50:15–21, 2009.

    PubMed  Google Scholar 

  27. Weston, B. R., W. A. Ross, J. Liu, and J. H. Lee. Clinical outcomes of nitinol and stainless steel uncovered metal stents for malignant biliary strictures: is there a difference? Gastrointest. Endosc. 72:1195–1200, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the Colorado Bioscience Discovery Grant for the funding which enabled the initial prototyping and testing of this device, and Craig Lanning and Bryan Rech for their assistance in the Bioengineering Department of the University of Colorado.

Disclosure

Jeffrey Olson, Robin Shandas, and Michael Erlanger have a patent application for the shape memory coapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Erlanger.

Additional information

Associate Editor James Tunnell oversaw the review of this article.

All porcine eyes were IACUC approval exempt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, J.L., Shandas, R. & Erlanger, M. Development of a Minimally Invasive, Injectable, Shape Memory Suture and Delivery System. Ann Biomed Eng 40, 1520–1529 (2012). https://doi.org/10.1007/s10439-012-0508-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0508-5

Keywords

Navigation