Skip to main content
Log in

Characterization of Changes to the Mechanical Properties of Arteries due to Cold Storage Using Nanoindentation Tests

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Understanding the effect of cold storage on arterial tissues is essential in various clinical and experimental practices. Cold storage techniques could significantly affect the post-cryosurgical or post-cryopreservation mechanical behavior of arteries. Previously, arteries were considered homogenous and elastic and the changes in material properties due to cold storage were inconclusive. In this study, using a custom-made nanoindentation device, changes to the local viscoelastic properties of porcine thoracic aorta wall due to three common storage temperatures (+4, −20, and −80 °C) within 24 h, 48 h, 1 week, and 3 weeks were characterized. The changes to both elastic and relaxation behaviors were investigated considering the multilayer, heterogeneous nature of the aortic wall. The results showed that the average instantaneous Young’s modulus (E) of +4 °C storage samples decreased while their permanent average relaxation amplitude (G ) increased and after 48 h these changes became significant (10 and 13% for E and G , respectively). Generally, in freezer storage, E increased and G showed no significant change. In prolonged preservation (>1 week), the results of −20 °C showed significant increase in E (20% after 3 weeks) while this increase for −80 °C was not significant, making it a better choice for tissue cold storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Adham, M., J. P. Gournier, J. P. Favre, E. D. L. Roche, C. Ducerf, J. Baulieux, X. Barral, and M. Pouyet. Mechanical characteristics of fresh and frozen human descending thoracic aorta. J. Surg. Res. 64:32–34, 1996.

    Article  PubMed  CAS  Google Scholar 

  2. Akhtar, R., N. Schwarzer, M. J. Sherratt, R. E. B. Watson, H. K. Graham, A. W. Trafford, P. M. Mummery, and B. Derby. Nanoindentation of histological specimens: mapping the elastic properties of soft tissues. J. Mater. Res. 24:638–646, 2009.

    Article  PubMed  CAS  Google Scholar 

  3. Cao, Y., D. Yang, and W. Soboyejoy. Nanoindentation method for determining the initial contact and adhesion characteristics of soft polydimethylsiloxane. J. Mater. Res. 20:2004–2011, 2005.

    Article  CAS  Google Scholar 

  4. Chow, M. J., and Y. Zhang. Changes in the mechanical and biochemical properties of aortic tissue due to cold storage. J. Surg. Res. 171:434–442, 2011.

    Article  PubMed  CAS  Google Scholar 

  5. Ebenstein, D. M. Nano-JKR force curve method overcomes challenges of surface detection and adhesion for nanoindentation of a compliant polymer in air and water. J. Mater. Res. 26:1026–1035, 2011.

    Article  CAS  Google Scholar 

  6. Ebenstein, D. M., and L. A. Pruitt. Nanoindentation of soft hydrated materials for application to vascular tissues. J. Biomed. Mater. Res. 69A:222–232, 2004.

    Article  CAS  Google Scholar 

  7. Fung, Y. C. Biomechanics Mechanical Properties of Living Tissues. New York: Springer, 568 pp., 1996.

  8. Graham, H. K., R. Akhtar, C. Kridiotis, B. Derby, T. Kundu, A. W. Trafford, and M. J. Sherratt. Localised micro-mechanical stiffening in the ageing aorta. Mech. Ageing Dev. 132:459–467, 2011.

    Article  PubMed  Google Scholar 

  9. Gupta, S., F. Carrillo, M. Balooch, L. Pruitt, and C. Puttlitz. Simulated soft tissue nanoindentation: a finite element study. J. Mater. Res. 20:1979–1994, 2005.

    Article  CAS  Google Scholar 

  10. Hawkins, J. A., N. D. Hillman, L. M. Lambert, J. Jones, G. B. Di Russo, T. Profaizer, T. C. Fuller, L. Minich, R. V. Williams, and R. E. Shaddy. Immunogenicity of decellularized cryopreserved allografts in pediatric cardiac surgery: comparison with standard cryopreserved allografts. J. Thorac. Cardiovasc. Surg. 126:247–252, 2003.

    Article  PubMed  Google Scholar 

  11. Holzapfel, G. A., and C. T. Gasser. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.

    Article  Google Scholar 

  12. Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005.

    Article  PubMed  CAS  Google Scholar 

  13. Kaufman, J. D. Surface detection errors cause overestimation of the modulus in nanoindentation on soft materials. J. Mech. Behav. Biomed. Mater. 2:312–317, 2009.

    Article  PubMed  Google Scholar 

  14. Lally, C., A. J. Reid, and P. J. Prendergast. Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension. Ann. Biomed. Eng. 32:1355–1364, 2004.

    Article  PubMed  CAS  Google Scholar 

  15. Leseche, G., Y. Castier, M. Petit, P. Bertrand, M. Kitzis, S. Mussot, M. Besnard, and O. Cerceau. Long-term results of cryopreserved arterial allograft reconstruction in infected prosthetic grafts and mycotic aneurysm of the abdominal aorta. J. Vasc. Surg. 34:616–622, 2001.

    Article  PubMed  CAS  Google Scholar 

  16. Levental, I., K. R. Levental, E. A. Klein, R. Assoian, R. T. Miller, R. G. Wells, and P. A. Janmey. A simple indentation device for measuring micrometer-scale tissue stiffness. J. Phys. Condens. Matter 22:194120–194129, 2010.

    Article  PubMed  CAS  Google Scholar 

  17. Matsumoto, T., T. Goto, T. Furukawa, and M. Sato. Residual stress and strain in the lamellar unit of the porcine aorta: experiment and analysis. J. Biomech. 37:807–815, 2004.

    Article  PubMed  Google Scholar 

  18. Muller-Schweinitzer, E., M. Grapow, M. A. Konerding, and H. R. Zerkowski. Freezing without surrounding cryomedium preserves the endothelium and its function in human internal mammary arteries. Cryobiology 51:54–65, 2005.

    Article  PubMed  Google Scholar 

  19. O’Connell, M. K., S. Murthy, S. Phan, C. Xu, J. Buchanan, R. Spilker, R. L. Dalman, C. K. Zarins, W. Denk, and C. A. Taylor. The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging. Matrix Biol. 27:171–181, 2008.

    Article  PubMed  Google Scholar 

  20. Pascual, G., C. Escudero, M. Rodriguez, C. Corrales, N. Serrano, J. M. Bellon, and J. Bujan. Restoring the endothelium of cryopreserved arterial grafts: co-culture of venous and arterial endothelial cells. Cryobiology 49:272–285, 2004.

    Article  PubMed  CAS  Google Scholar 

  21. Pukacki, F., T. Jankowski, M. Gabriel, G. Oszkinis, Z. Krasinski, and S. Zapalski. The mechanical properties of fresh and cryopreserved arterial homografts. Eur. J. Vasc. Endovasc. Surg. 20:21–24, 2000.

    Article  PubMed  CAS  Google Scholar 

  22. Qi, H. J., K. Joyce, and M. C. Boyce. Durometer hardness and the stress–strain behavior of elastomeric materials. Rubber Chem. Technol. 72:419–435, 2003.

    Article  Google Scholar 

  23. Simo, J. C., and T. J. R. Hughes. Computational Inelasticity. New York: Springer, 392 pp., 1998.

  24. Sneddon, I. N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3:47–57, 1965.

    Article  Google Scholar 

  25. Solanes, N., M. Rigol, M. Castella, E. Khabiri, J. Ramirez, J. Segales, M. Roque, E. Agusti, F. Perez-Villa, E. Roig, J. L. Pomar, G. Sanz, and M. Heras. Cryopreservation alters antigenicity of allografts in a porcine model of transplant vasculopathy. Transpl. Proc. 36:3288–3294, 2004.

    Article  CAS  Google Scholar 

  26. Stemper, B. D., N. Yoganandan, M. R. Stineman, T. A. Gennarelli, J. L. Baisden, and F. A. Pintar. Mechanics of fresh, refrigerated, and frozen arterial tissue. J. Surg. Res. 139:236–242, 2007.

    Article  PubMed  Google Scholar 

  27. Teng, Z., D. Tang, J. Zheng, P. K. Woodard, and A. H. Hoffman. An experimental study on the ultimate strength of the adventitia and media of human atherosclerotic carotid arteries in circumferential and axial directions. J. Biomech. 42:2535–2539, 2009.

    Article  PubMed  Google Scholar 

  28. Venkatasubramanian, R. T., E. D. Grassl, V. H. Barocas, D. Lafontaine, and J. C. Bischo. Effects of freezing and cryopreservation on the mechanical properties of arteries. Ann. Biomed. Eng. 34:823–832, 2006.

    Article  PubMed  Google Scholar 

  29. Xu, Y., T. C. Hua, D. W. Sun, and G. Y. Zhou. Experimental study and analysis of mechanical properties of frozen rabbit aorta by fracture mechanics approach. J. Biomech. 41:649–655, 2008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The support for this study was provided partially by the NHLBI under Grant Number K25HL086512-03 and Grant Number R21HL088159-02.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurosh Darvish.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmasizadeh, A., Darvish, K. & Autieri, M. Characterization of Changes to the Mechanical Properties of Arteries due to Cold Storage Using Nanoindentation Tests. Ann Biomed Eng 40, 1434–1442 (2012). https://doi.org/10.1007/s10439-011-0506-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0506-z

Keywords

Navigation