Skip to main content
Log in

Using Tendon Inherent Electric Properties to Consistently Track Induced Mechanical Strain

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The present work explores the possibility that the inherent electrical properties of a tendon might allow it to act as its own strain gauge. Tendon has been shown to exhibit piezoelectric effects as well as streaming potentials when subjected to a mechanical stress. To assess the feasibility of using these properties to repeatably measure in situ strain, bovine Achilles tendon test specimens were connected in series with a control resistor in a direct current circuit. Longitudinal (along the collagen fiber direction) and transverse test specimens were subjected to sinusoidal tension while electrical resistance data for the specimens was collected. Change in resistance per unit strain and gauge factors (GFs) revealed a repeatable and significantly different correlation between resistance and strain for the longitudinal and transverse specimens (p < 0.001). Change in resistance per unit strain values for longitudinal and transverse specimens were 0.85 and 1.76 MΩ/ε, respectively while corresponding GFs were 0.52 and 0.74, respectively. Others have reported piezoelectric mechanisms and streaming potential mechanisms in hydrated collagen, however the present work is unique in presenting an accurate and repeatable model of anisotropic tendon behavior that could be used to develop an in situ strain sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ahn, A. C., and A. J. Grodzinsky. Relevance of collagen piezoelectricity to “Wolff’s law”: a critical review. Med. Eng. Phys. 31:733–741, 2009.

    Article  PubMed  Google Scholar 

  2. Anderson, J. C., and C. Eriksson. Electrical properties of wet collagen. Nature 218:166–168, 1968.

    Article  PubMed  CAS  Google Scholar 

  3. Barlian, A. A., W. T. Park, J. R. Mallon, A. J. Rastegar, and B. L. Pruitt. Review: semiconductor piezoresistance for microsystems. Proc. IEEE. 97:513–552, 2009.

    Article  CAS  Google Scholar 

  4. Cerulli, G., D. L. Benoit, M. Lamontagne, A. Caraffa, and A. Liti. In vivo anterior cruciate ligament strain behaviour during a rapid deceleration movement: case report. Knee Surg. Sports Traumatol. Arthrosc. 11:307–311, 2003.

    Article  PubMed  CAS  Google Scholar 

  5. Bergmann, J. H., and A. H. McGregor. Body-worn sensor design: what do patients and clinicians want? Ann. Biomed. Eng. 39:2299–2312, 2011.

    Article  PubMed  CAS  Google Scholar 

  6. Cawley, P. W., and E. P. France. Biomechanics of the lateral ligaments of the ankle—an evaluation of the effects of axial load and single plane motions on ligament strain patterns. Foot Ankle. 12:92–99, 1991.

    PubMed  CAS  Google Scholar 

  7. Chen, C. T., R. P. McCabe, A. J. Grodzinsky, and R. Vanderby, Jr. Transient and cyclic responses of strain-generated potential in rabbit patellar tendon are frequency and ph dependent. J. Biomech. Eng. 122:465–470, 2000.

    Article  PubMed  CAS  Google Scholar 

  8. Chen, L., Y. Wu, J. Yu, Z. Jiao, Y. Ao, C. Yu, J. Wang, and G. Cui. Effect of repeated freezing-thawing on the achilles tendon of rabbits. Knee Surg. Sports Traumatol. Arthrosc. 19:1028–1034, 2011.

    Article  PubMed  Google Scholar 

  9. Defrate, L. E., A. van der Ven, P. J. Boyer, T. J. Gill, and G. Li. The measurement of the variation in the surface strains of Achilles tendon grafts using imaging techniques. J. Biomech. 39:399–405, 2006.

    Article  PubMed  Google Scholar 

  10. Erickson, A. R., K. Yasuda, B. Beynnon, R. Johnson, and M. Pope. An in vitro dynamic evaluation of prophylactic knee braces during lateral impact loading. Am. J. Sport Med. 21:26–35, 1993.

    Article  CAS  Google Scholar 

  11. Fleming, B. C., and B. D. Beynnon. In vivo measurement of ligament/tendon strains and forces: a review. Ann. Biomed. Eng. 32:318–328, 2004.

    Article  PubMed  Google Scholar 

  12. Fukada, E. On the piezoelectric effect of silk fibers. J. Phys. Soc. Jpn. 11:1301A, 1956.

    Article  Google Scholar 

  13. Fukada, E., H. Ueda, and R. Rinaldi. Piezoelectric and related properties of hydrated collagen. Biophys J. 16:911–918, 1976.

    Article  PubMed  CAS  Google Scholar 

  14. Fukada, E., and I. Yasuda. On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 12:1158–1162, 1957.

    Article  Google Scholar 

  15. Fukada, E., and I. Yasuda. Piezoelectric effects in collagen. Jpn. J. Appl. Phys. 3:117–121, 1964.

    Article  CAS  Google Scholar 

  16. Gruverman, A., B. J. Rodriguez, and S. Kalinin. Electromechanical behavior in biological systems at the nanoscale. In: Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, edited by S. Kalinin, and A. Gruverman. New York: Springer, 2007, pp. 615–633.

    Google Scholar 

  17. Hild, F., and S. Roux. Digital image correlation: from displacement measurement to identification of elastic properties—a review. Strain. 42:69–80, 2006.

    Article  Google Scholar 

  18. Hoffman, A. H., D. R. Robichaud, II, J. J. Duquette, and P. Grigg. Determining the effect of hydration upon the properties of ligaments using pseudo gaussian stress stimuli. J. Biomech. 38:1636–1642, 2005.

    Article  PubMed  Google Scholar 

  19. Huang, C. Y., V. M. Wang, E. L. Flatow, and V. C. Mow. Temperature-dependent viscoelastic properties of the human supraspinatus tendon. J. Biomech. 42:546–549, 2009.

    Article  PubMed  Google Scholar 

  20. Jung, H. J., G. Vangipuram, M. B. Fisher, G. Yang, S. Hsu, J. Bianchi, C. Ronholdt, and S. L. Woo. The effects of multiple freeze-thaw cycles on the biomechanical properties of the human bone-patellar tendon-bone allograft. J. Orthop. Res. 29:1193–1198, 2011.

    Article  PubMed  Google Scholar 

  21. Lichtwark, G. A., and A. M. Wilson. In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J. Exp. Biol. 208:4715–4725, 2005.

    Article  PubMed  CAS  Google Scholar 

  22. McDonald, F., and W. J. Houston. An in vivo assessment of muscular activity and the importance of electrical phenomena in bone remodelling. J Anat. 172:165–175, 1990.

    PubMed  CAS  Google Scholar 

  23. Minary-Jolandan, M., and M. F. Yu. Nanoscale characterization of isolated individual type I collagen fibrils: polarization and piezoelectricity. Nanotechnology 20:085706, 2009.

    Article  PubMed  Google Scholar 

  24. Netto, T. G., and R. L. Zimmerman. Effect of water on piezoelectricity in bone and collagen. Biophys J. 15:573–576, 1975.

    Article  PubMed  CAS  Google Scholar 

  25. Ravary, B., P. Pourcelot, C. Bortolussi, S. Konieczka, and N. Crevier-Denoix. Strain and force transducers used in human and veterinary tendon and ligament biomechanical studies. Clin. Biomech. 19:433–447, 2004.

    Article  Google Scholar 

  26. Regling, G. Conception of a bioelectromagnetic signal system via the collagen fibril network; biochemical conclusions and underlying coherent mechanism. I. Solid state effects and hierarchical bioelectrical regulation. Electro Magnetobiol 19:149–161, 2000.

    CAS  Google Scholar 

  27. Reilly, P., A. M. Bull, A. A. Amis, A. L. Wallace, and R. J. Emery. Arthroscopically insertable force probes in the rotator cuff in vivo. Arthroscopy. 19:E8, 2003.

    PubMed  Google Scholar 

  28. Smutz, W. P., M. Drexler, L. J. Berglund, E. Growney, and K. N. An. Accuracy of a video strain measurement system. J Biomech. 29:813–817, 1996.

    Article  PubMed  CAS  Google Scholar 

  29. Telega, J. J., and R. Wojnar. Piezoelectric effects in biological tissues. J. Theor. Appl. Mech. 3:723–758, 2002.

    Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation (CMMI-0952758).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton E. Bowden.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, C.R., Bowden, A.E. Using Tendon Inherent Electric Properties to Consistently Track Induced Mechanical Strain. Ann Biomed Eng 40, 1568–1574 (2012). https://doi.org/10.1007/s10439-011-0504-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0504-1

Keywords

Navigation