Skip to main content

Advertisement

Log in

Optical and Opto-Acoustic Interventional Imaging

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Many clinical interventional procedures, such as surgery or endoscopy, are today still guided by human vision and perception. Human vision however is not sensitive or accurate in detecting a large range of disease biomarkers, for example cellular or molecular processes characteristic of disease. For this reason advanced optical and opto-acoustic (photo-acoustic) methods are considered for enabling a more versatile, sensitive and accurate detection of disease biomarkers and complement human vision in clinical decision making during interventions. Herein, we outline developments in emerging fluorescence and opto-acoustic sensing and imaging techniques that can lead to practical implementations toward improving interventional vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Adams, K. E., J. C. Rasmussen, C. Darne, I. C. Tan, M. B. Aldrich, M. V. Marshall, C. E. Fife, E. A. Maus, L. A. Smith, R. Guilloid, S. Hoy, and E. M. Sevick-Muraca. Direct evidence of lymphatic function improvement after advanced pneumatic compression device treatment of lymphedema. Biomed. Opt. Express 1:114–125, 2010.

    Article  PubMed  Google Scholar 

  2. Adler, A., H. Pohl, I. S. Papanikolaou, H. Abou-Rebyeh, G. Schachschal, W. Veltzke-Schlieker, A. C. Khalifa, E. Setka, M. Koch, B. Wiedenmann, and T. Rosch. A prospective randomised study on narrow-band imaging versus conventional colonoscopy for adenoma detection: does narrow-band imaging induce a learning effect? Gut 57:59–64, 2008.

    Article  PubMed  CAS  Google Scholar 

  3. Aguirre, A. D., P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto. High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging. Opt. Lett. 28:2064–2066, 2003.

    Article  PubMed  CAS  Google Scholar 

  4. Aguirre, A. D., J. Sawinski, S. W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto. High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe. Opt. Express 18:4222–4239, 2010.

    Article  PubMed  CAS  Google Scholar 

  5. Alberini, J. L., V. Edeline, A. L. Giraudet, L. Champion, B. Paulmier, O. Madar, A. Poinsignon, D. Bellet, and A. P. Pecking. Single photon emission tomography/computed tomography (SPET/CT) and positron emission tomography/computed tomography (PET/CT) to image cancer. J. Surg. Oncol. 103:602–606, 2011.

    Article  PubMed  Google Scholar 

  6. Ambrosi, C. M., N. Moazami, A. M. Rollins, and I. R. Efimov. Virtual histology of the human heart using optical coherence tomography. J. Biomed. Opt. 14:054002, 2009.

    Article  PubMed  Google Scholar 

  7. Ammar, D. A., T. C. Lei, O. Masihzadeh, E. A. Gibson, and M. Y. Kahook. Trans-scleral imaging of the human trabecular meshwork by two-photon microscopy. Mol. Vis. 17:583–590, 2011.

    PubMed  Google Scholar 

  8. Arens, C., T. Dreyer, K. Malzahn, and H. Glanz. Direct and indirect autofluorescence laryngoscopy in the diagnosis of laryngeal cancer and its precursor lesions. Otolaryngol. Pol. 58:197–203, 2004.

    PubMed  CAS  Google Scholar 

  9. Azhdarinia, A., N. Wilganowski, H. Robinson, P. Ghosh, S. Kwon, Z. W. Lazard, A. R. Davis, E. Olmsted-Davis, and E. M. Sevick-Muraca. Characterization of chemical, radiochemical and optical properties of a dual-labeled MMP-9 targeting peptide. Bioorg. Med. Chem. 19:3769–3776, 2011.

    Article  PubMed  CAS  Google Scholar 

  10. Azzolini, C., F. Patelli, M. Codenotti, L. Pierro, and R. Brancato. Optical coherence tomography in idiopathic epiretinal macular membrane surgery. Eur. J. Ophthalmol. 9:206–211, 1999.

    PubMed  CAS  Google Scholar 

  11. Bandettini, P. Functional MRI today. Int. J. Psychophysiol. 63:138–145, 2007.

    Article  PubMed  Google Scholar 

  12. Bassi, A., D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo. Time-gated optical projection tomography. Opt. Lett. 35:2732–2734, 2010.

    Article  PubMed  Google Scholar 

  13. Basu, S., T. C. Kwee, S. Surti, E. A. Akin, D. Yoo, and A. Alavi. Fundamentals of PET and PET/CT imaging. Ann. N. Y. Acad. Sci. 1228:1–18, 2011.

    Article  PubMed  CAS  Google Scholar 

  14. Biswas, S., X. Wang, A. R. Morales, H. Y. Ahn, and K. D. Belfield. Integrin-targeting block copolymer probes for two-photon fluorescence bioimaging. Biomacromolecules 12:441–449, 2011.

    Article  PubMed  CAS  Google Scholar 

  15. Bogaards, A., M. C. G. Aalders, C. C. Zeyl, S. de Blok, C. Dannecker, P. Hillemanns, H. Stepp, and H. J. C. M. Sterenborg. Localization and staging of cervical intraepithelial neoplasia using double ratio fluorescence imaging. J. Biomed. Opt. 7:215–220, 2002.

    Article  PubMed  CAS  Google Scholar 

  16. Bogaards, A., H. J. Sterenborg, J. Trachtenberg, B. C. Wilson, and L. Lilge. In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery. Lasers Surg. Med. 39:605–613, 2007.

    Article  PubMed  CAS  Google Scholar 

  17. Bottiroli, G., A. C. Croce, D. Locatelli, R. Nano, E. Giombelli, A. Messina, and E. Benericetti. Brain tissue autofluorescence: an aid for intraoperative delineation of tumor resection margins. Cancer Detect. Prev. 22:330–339, 1998.

    Article  PubMed  CAS  Google Scholar 

  18. Bradley, R. S., and M. S. Thorniley. A review of attenuation correction techniques for tissue fluorescence. J. R. Soc. Interface 3:1–13, 2006.

    Article  PubMed  CAS  Google Scholar 

  19. Brown, E. N., N. S. Burris, J. Gu, Z. N. Kon, P. Laird, S. Kallam, C. M. Tang, J. M. Schmitt, and R. S. Poston. Thinking inside the graft: applications of optical coherence tomography in coronary artery bypass grafting. J. Biomed. Opt. 12:051704, 2007.

    Article  PubMed  Google Scholar 

  20. Buckler, A. J., J. L. Mulshine, R. Gottlieb, B. S. Zhao, P. D. Mozley, and L. Schwartz. The use of volumetric CT as an imaging biomarker in lung cancer. Acad. Radiol. 17:100–106, 2010.

    Article  PubMed  Google Scholar 

  21. Buehler, A., E. Herzog, D. Razansky, and V. Ntziachristos. Video rate optoacoustic tomography of mouse kidney perfusion. Opt. Lett. 35:2475–2477, 2010.

    Article  PubMed  Google Scholar 

  22. Burns, J. A., K. H. Kim, J. F. deBoer, R. R. Anderson, and S. M. Zeitels. Polarization-sensitive optical coherence tomography imaging of benign and malignant laryngeal lesions: an in vivo study. Otolaryngol. Head Neck Surg. 145:91–99, 2011.

    Article  PubMed  Google Scholar 

  23. Capelle, L. G., J. Haringsma, A. C. de Vries, E. W. Steyerberg, K. Biermann, H. van Dekken, and E. J. Kuipers. Narrow band imaging for the detection of gastric intestinal metaplasia and dysplasia during surveillance endoscopy. Dig. Dis. Sci. 55:3442–3448, 2010.

    Article  PubMed  Google Scholar 

  24. Carlson, A. L., A. M. Gillenwater, M. D. Williams, A. K. El-Naggar, and R. R. Richards-Kortum. Confocal microscopy and molecular-specific optical contrast agents for the detection of oral neoplasia. Technol. Cancer Res. Treat. 6:361–374, 2007.

    PubMed  Google Scholar 

  25. Chen, S. D., J. F. Salmon, and C. K. Patel. Videoendoscope-guided fluorescein-assisted vitrectomy for phakic malignant glaucoma. Arch. Ophthalmol. 123:1419–1421, 2005.

    Article  PubMed  Google Scholar 

  26. Cherry, S. R. Multimodality imaging: beyond PET/CT and SPECT/CT. Semin. Nucl. Med. 39:348–353, 2009.

    Article  PubMed  Google Scholar 

  27. Choi, W. I., J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae. Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5:1995–2003, 2011.

    Article  PubMed  CAS  Google Scholar 

  28. Choi, W. J., I. Jeon do, S. G. Ahn, J. H. Yoon, S. Kim, and B. H. Lee. Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution. Opt. Express 18:23285–23295, 2010.

    Article  PubMed  CAS  Google Scholar 

  29. Cicchi, R., and F. S. Pavone. Non-linear fluorescence lifetime imaging of biological tissues. Anal. Bioanal. Chem. 400:2687–2697, 2011.

    Article  PubMed  CAS  Google Scholar 

  30. Collier, T., M. Guillaud, M. Follen, A. Malpica, and R. Richards-Kortum. Real-time reflectance confocal microscopy: comparison of two-dimensional images and three-dimensional image stacks for detection of cervical precancer. J. Biomed. Opt. 12:024021, 2007.

    Article  PubMed  Google Scholar 

  31. Conovaloff, A., H. W. Wang, J. X. Cheng, and A. Panitch. Imaging growth of neurites in conditioned hydrogel by coherent anti-stokes raman scattering microscopy. Organogenesis 5:231–237, 2009.

    Article  PubMed  Google Scholar 

  32. Conti, M. Focus on time-of-flight PET: the benefits of improved time resolution. Eur. J. Nucl. Med. Mol. Imaging 38:1147–1157, 2011.

    Article  PubMed  Google Scholar 

  33. Crane, L. M., G. Themelis, H. J. Arts, K. T. Buddingh, A. H. Brouwers, V. Ntziachristos, G. M. van Dam, and A. G. van der Zee. Intraoperative near-infrared fluorescence imaging for sentinel lymph node detection in vulvar cancer: first clinical results. Gynecol. Oncol. 120:291–295, 2011.

    Article  PubMed  CAS  Google Scholar 

  34. Crane, L. M., G. Themelis, R. G. Pleijhuis, N. J. Harlaar, A. Sarantopoulos, H. J. Arts, A. G. van der Zee, N. Vasilis, and G. M. van Dam. Intraoperative multispectral fluorescence imaging for the detection of the sentinel lymph node in cervical cancer: a novel concept. Mol. Imaging Biol. 13:1043–1049, 2010.

    Article  Google Scholar 

  35. Curvers, W., L. Baak, R. Kiesslich, A. Van Oijen, T. Rabenstein, K. Ragunath, J. F. Rey, P. Scholten, U. Seitz, F. Ten Kate, P. Fockens, and J. Bergman. Chromoendoscopy and narrow-band imaging compared with high-resolution magnification endoscopy in Barrett’s esophagus. Gastroenterology 134:670–679, 2008.

    Article  PubMed  Google Scholar 

  36. Curvers, W. L., C. J. Bohmer, R. C. Mallant-Hent, A. H. Naber, C. I. Ponsioen, K. Ragunath, R. Singh, M. B. Wallace, H. C. Wolfsen, L. M. Song, R. Lindeboom, P. Fockens, and J. J. Bergman. Mucosal morphology in Barrett’s esophagus: interobserver agreement and role of narrow band imaging. Endoscopy 40:799–805, 2008.

    Article  PubMed  CAS  Google Scholar 

  37. Curvers, W. L., R. Singh, L. M. Song, H. C. Wolfsen, K. Ragunath, K. Wang, M. B. Wallace, P. Fockens, and J. J. Bergman. Endoscopic tri-modal imaging for detection of early neoplasia in Barrett’s oesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system. Gut 57:167–172, 2008.

    Article  PubMed  CAS  Google Scholar 

  38. De Veld, D. C., M. J. Witjes, H. J. Sterenborg, and J. L. Roodenburg. The status of in vivo autofluorescence spectroscopy and imaging for oral oncology. Oral Oncol. 41:117–131, 2005.

    Article  PubMed  Google Scholar 

  39. Desai, N. D., S. Miwa, D. Kodama, T. Koyama, G. Cohen, M. P. Pelletier, E. A. Cohen, G. T. Christakis, B. S. Goldman, and S. E. Fremes. A randomized comparison of intraoperative indocyanine green angiography and transit-time flow measurement to detect technical errors in coronary bypass grafts. J. Thorac. Cardiovasc. Surg. 132:585–594, 2006.

    Article  PubMed  Google Scholar 

  40. Detre, J. A. Clinical applicability of functional MRI. J. Magn. Reson. Imaging JMRI 23:808–815, 2006.

    Article  Google Scholar 

  41. Dima, A., and V. Ntziachristos. Optoacoustic imaging for clinical applications: devices and methods. Expert Opin. Med. Diagn. 5:263–272, 2011.

    Article  Google Scholar 

  42. Drezek, R., C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum. Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia. Photochem. Photobiol. 73:636–641, 2001.

    Article  PubMed  CAS  Google Scholar 

  43. Dunn, J., and L. Lovat. Photodynamic therapy using 5-aminolaevulinic acid for the treatment of dysplsia in Barrett’s oesophagus. Expert Opin. Pharmacol. 9:851–858, 2008.

    Article  CAS  Google Scholar 

  44. Durr, N. J., C. T. Weisspfennig, B. A. Holfeld, and A. Ben-Yakar. Maximum imaging depth of two-photon autofluorescence microscopy in epithelial tissues. J. Biomed. Opt. 16:026008, 2011.

    Article  PubMed  Google Scholar 

  45. Duyn, J. H. Study of brain anatomy with high-field MRI: recent progress. Magn. Reson. Imaging 28:1210–1215, 2010.

    Article  PubMed  Google Scholar 

  46. East, J. E., N. Suzuki, M. Stavrinidis, T. Guenther, H. J. Thomas, and B. P. Saunders. Narrow band imaging for colonoscopic surveillance in hereditary non-polyposis colorectal cancer. Gut 57:65–70, 2008.

    Article  PubMed  CAS  Google Scholar 

  47. Ericson, M. B., C. Simonsson, S. Guldbrand, C. Ljungblad, J. Paoli, and M. Smedh. Two-photon laser-scanning fluorescence microscopy applied for studies of human skin. J. Biophotonics 1:320–330, 2008.

    Article  PubMed  CAS  Google Scholar 

  48. Erie, J. C., J. W. McLaren, and S. V. Patel. Confocal microscopy in ophthalmology. Am. J. Ophthalmol. 148:639–646, 2009.

    Article  PubMed  Google Scholar 

  49. Evans, C. L., E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc. Natl. Acad. Sci. USA 102:16807–16812, 2005.

    Article  PubMed  CAS  Google Scholar 

  50. Evans, C. L., X. Xu, S. Kesari, X. S. Xie, S. T. Wong, and G. S. Young. Chemically-selective imaging of brain structures with CARS microscopy. Opt. Express 15:12076–12087, 2007.

    Article  PubMed  CAS  Google Scholar 

  51. Evans, J. A., J. M. Poneros, B. E. Bouma, J. Bressner, E. F. Halpern, M. Shishkov, G. Y. Lauwers, M. Mino-Kenudson, N. S. Nishioka, and G. J. Tearney. Optical coherence tomography to identify intramucosal carcinoma and high-grade dysplasia in Barrett’s esophagus. Clin. Gastroenterol. Hepatol. 4:38–43, 2006.

    Article  PubMed  Google Scholar 

  52. Ewelt, C., F. W. Floeth, J. Felsberg, H. J. Steiger, M. Sabel, K. J. Langen, G. Stoffels, and W. Stummer. Finding the anaplastic focus in diffuse gliomas: the value of Gd-DTPA enhanced MRI, FET-PET, and intraoperative. ALA-derived tissue fluorescence. Clin. Neurol. Neurosurg. 113:541–547, 2011.

    Article  PubMed  Google Scholar 

  53. Fayter, D., M. Corbett, M. Heirs, D. Fox, and A. Eastwood. A systematic review of photodynamic therapy in the treatment of pre-cancerous skin conditions, Barrett’s oesophagus and cancers of the biliary tract, brain, head and neck, lung, oesophagus and skin. Health Technol. Assess. 14:1–288, 2010.

    PubMed  CAS  Google Scholar 

  54. Ferris, D. G., R. A. Lawhead, E. D. Dickman, N. Holtzapple, J. A. Miller, S. Grogan, S. Bambot, A. Agrawal, and M. L. Faupel. Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia. J. Low Genit. Tract Dis. 5:65–72, 2001.

    PubMed  CAS  Google Scholar 

  55. Filip, M., S. Iordache, A. Săftoiu, and T. Ciurea. Autofluorescence imaging and magnification endoscopy. World J. Gastroenterol. 17:9–14, 2011.

    Article  PubMed  Google Scholar 

  56. Fu, Y., T. B. Huff, H. W. Wang, H. Wang, and J. X. Cheng. Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy. Opt. Express 16:19396–19409, 2008.

    Article  PubMed  CAS  Google Scholar 

  57. Gallego-Pinazo, R., A. M. Suelves-Cogollos, R. Dolz-Marco, J. F. Arevalo, S. Garcia-Delpech, J. L. Mullor, and M. Diaz-Llopis. Macular laser photocoagulation guided by spectral-domain optical coherence tomography versus fluorescein angiography for diabetic macular edema. Clin. Ophthalmol. 5:613–617, 2011.

    PubMed  Google Scholar 

  58. Gallwas, J. K., L. Turk, H. Stepp, S. Mueller, R. Ochsenkuehn, K. Friese, and C. Dannecker. Optical coherence tomography for the diagnosis of cervical intraepithelial neoplasia. Lasers Surg. Med. 43:206–212, 2011.

    Article  PubMed  Google Scholar 

  59. Gambichler, T., G. Moussa, and P. Altmeyer. A pilot study of fluorescence diagnosis of basal cell carcinoma using a digital flash light based imaging system. Photodermatol. Photoimmunol. Photomed. 24:67–71, 2008.

    Article  PubMed  Google Scholar 

  60. Gao, L., H. Zhou, M. J. Thrall, F. Li, Y. Yang, Z. Wang, P. Luo, K. K. Wong, G. S. Palapattu, and S. T. Wong. Label-free high-resolution imaging of prostate glands and cavernous nerves using coherent anti-Stokes Raman scattering microscopy. Biomed. Opt. Express 2:915–926, 2011.

    Article  PubMed  Google Scholar 

  61. Garcia-Garcia, H. M., M. A. Costa, and P. W. Serruys. Imaging of coronary atherosclerosis: intravascular ultrasound. Eur. Heart J. 31:2456–2469, 2010.

    Article  PubMed  Google Scholar 

  62. Gareau, D. S., Y. Li, B. Huang, Z. Eastman, K. S. Nehal, and M. Rajadhyaksha. Confocal mosaicing microscopy in Mohs skin excisions: feasibility of rapid surgical pathology. J. Biomed. Opt. 13:054001, 2008.

    Article  PubMed  Google Scholar 

  63. Georgakoudi, I., B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld. NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res. 62:682–687, 2002.

    PubMed  CAS  Google Scholar 

  64. Gluckman, J. L., and R. P. Zitsch. Photodynamic therapy in the management of head and neck cancer. Cancer Treat. Res. 52:95–113, 1990.

    Article  PubMed  CAS  Google Scholar 

  65. Goo, H. W. State-of-the-art CT imaging techniques for congenital heart disease. Korean J. Radiol. 11:4–18, 2010.

    Article  PubMed  Google Scholar 

  66. Gotoh, K., T. Yamada, O. Ishikawa, H. Takahashi, H. Eguchi, M. Yano, H. Ohigashi, Y. Tomita, Y. Miyamoto, and S. Imaoka. A novel image-guided surgery of hepatocellular carcinoma by indocyanine green fluorescence imaging navigation. J. Surg. Oncol. 100:75–79, 2009.

    Article  PubMed  Google Scholar 

  67. Grimwood, A., L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst. Elastographic contrast generation in optical coherence tomography from a localized shear stress. Phys. Med. Biol. 55:5515–5528, 2010.

    Article  PubMed  Google Scholar 

  68. Grosberg, L. E., A. J. Radosevich, S. Asfaha, T. C. Wang, and E. M. Hillman. Spectral characterization and unmixing of intrinsic contrast in intact normal and diseased gastric tissues using hyperspectral two-photon microscopy. PLoS one 6:e19925, 2011.

    Article  PubMed  CAS  Google Scholar 

  69. Guldbrand, S., C. Simonsson, M. Goksor, M. Smedh, and M. B. Ericson. Two-photon fluorescence correlation microscopy combined with measurements of point spread function; investigations made in human skin. Opt. Express 18:15289–15302, 2010.

    Article  PubMed  CAS  Google Scholar 

  70. Haglund, M. M., M. S. Berger, and D. W. Hochman. Enhanced optical imaging of human gliomas and tumor margins. Neurosurgery 38:308–317, 1996.

    Article  PubMed  CAS  Google Scholar 

  71. Haka, A. S., Z. Volynskaya, J. A. Gardecki, J. Nazemi, R. Shenk, N. Wang, R. R. Dasari, M. Fitzmaurice, and M. S. Feld. Diagnosing breast cancer using Raman spectroscopy: prospective analysis. J. Biomed. Opt. 14:054023, 2009.

    Article  PubMed  CAS  Google Scholar 

  72. Hanaoka, N., N. Uedo, A. Shiotani, T. Inoue, Y. Takeuchi, K. Higashino, R. Ishihara, H. Iishi, K. Haruma, and M. Tatsuta. Autofluorescence imaging for predicting development of metachronous gastric cancer after Helicobacter pylori eradication. J. Gastroenterol. Hepatol. 25:1844–1849, 2010.

    Article  PubMed  Google Scholar 

  73. Handa, T., R. G. Katare, H. Nishimori, S. Wariishi, T. Fukutomi, M. Yamamoto, S. Sasaguri, and T. Sato. New device for intraoperative graft assessment: HyperEye charge-coupled device camera system. Gen. Thorac. Cardiovasc. Surg. 58:68–77, 2010.

    Article  PubMed  Google Scholar 

  74. Hassan, M., J. Riley, V. Chernomordik, P. Smith, R. Pursley, S. B. Lee, J. Capala, and A. H. Gandjbakhche. Fluorescence lifetime imaging system for in vivo studies. Mol. Imaging 6:229–236, 2007.

    PubMed  CAS  Google Scholar 

  75. Haxel, B. R., M. Goetz, R. Kiesslich, and J. Gosepath. Confocal endomicroscopy: a novel application for imaging of oral and oropharyngeal mucosa in human. Eur. Arch. Otorhinolaryngol. 267:443–448, 2010.

    Article  PubMed  Google Scholar 

  76. Helmchen, F., and W. Denk. Deep tissue two-photon microscopy. Nat. Methods 2:932–940, 2005.

    Article  PubMed  CAS  Google Scholar 

  77. Hinz, T., L. K. Ehler, H. Voth, I. Fortmeier, T. Hoeller, T. Hornung, and M. H. Schmid-Wendtner. Assessment of tumor thickness in melanocytic skin lesions: comparison of optical coherence tomography, 20-MHz ultrasound and histopathology. Dermatology 223:161–168, 2011.

    Article  PubMed  Google Scholar 

  78. Holm, C., M. Mayr, E. Hofter, A. Becker, U. J. Pfeiffer, and W. Muhlbauer. Intraoperative evaluation of skin-flap viability using laser-induced fluorescence of indocyanine green. Br. J. Plast. Surg. 55:635–644, 2002.

    Article  PubMed  CAS  Google Scholar 

  79. Holmes, J. OCT technology development: where are we now? A commercial perspective. J. Biophotonics 2:347–352, 2009.

    Article  PubMed  Google Scholar 

  80. Horky, L. L. and S. T. Treves. PET and SPECT in brain tumors and epilepsy. Neurosurg. Clinics N. Am. 22:169–184, viii, 2011.

    Google Scholar 

  81. Hu, S., K. Maslov, and L. V. Wang. Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy. Opt. Express 17:7688–7693, 2009.

    Article  PubMed  CAS  Google Scholar 

  82. Hu, S., and L. V. Wang. Photoacoustic imaging and characterization of the microvasculature. J. Biomed. Opt. 15:011101, 2010.

    Article  PubMed  CAS  Google Scholar 

  83. Huber, M. A. Assessment of the VELscope as an adjunctive examination tool. Tex Dent. J. 126:528–535, 2009.

    PubMed  Google Scholar 

  84. Huh, W. K., R. M. Cestero, F. A. Garcia, M. A. Gold, R. S. Guido, K. McIntyre-Seltman, D. M. Harper, L. Burke, S. T. Sum, R. F. Flewelling, and R. D. Alvarez. Optical detection of high-grade cervical intraepithelial neoplasia in vivo: results of a 604-patient study. Am. J. Obstet. Gynecol. 190:1249–1257, 2004.

    Article  PubMed  Google Scholar 

  85. Hungerhuber, E., H. Stepp, M. Kriegmair, C. Stief, A. Hofstetter, A. Hartmann, R. Knuechel, A. Karl, S. Tritschler, and D. Zaak. Seven years’ experience with 5-aminolevulinic acid in detection of transitional cell carcinoma of the bladder. Urology 69:260–264, 2007.

    Article  PubMed  Google Scholar 

  86. Ikematsu, H., T. Matsuda, F. Emura, Y. Saito, T. Uraoka, K. I. Fu, K. Kaneko, A. Ochiai, T. Fujimori, and Y. Sano. Efficacy of capillary pattern type IIIA/IIIB by magnifying narrow band imaging for estimating depth of invasion of early colorectal neoplasms. BMC Gastroenterol. 10:33, 2010.

    Article  PubMed  Google Scholar 

  87. Ikematsu, H., Y. Saito, and H. Yamano. Comparative evaluation of endoscopic factors from conventional colonoscopy and narrow-band imaging of colorectal lesions. Dig. Endosc. 23(Suppl 1):95–100, 2011.

    Article  PubMed  Google Scholar 

  88. Inoue, K., N. Wakabayashi, Y. Morimoto, K. Miyawaki, A. Kashiwa, N. Yoshida, K. Nakano, H. Takada, Y. Harada, N. Yagi, Y. Naito, T. Takamatsu, and T. Yoshikawa. Evaluation of autofluorescence colonoscopy for diagnosis of superficial colorectal neoplastic lesions. Int. J. Colorectal Dis. 25:811–816, 2010.

    Article  PubMed  Google Scholar 

  89. Ishizawa, T., N. Fukushima, J. Shibahara, K. Masuda, S. Tamura, T. Aoki, K. Hasegawa, Y. Beck, M. Fukayama, and N. Kokudo. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer 115:2491–2504, 2009.

    Article  PubMed  Google Scholar 

  90. Jayaprakash, V., M. Sullivan, M. Merzianu, N. R. Rigual, T. R. Loree, S. R. Popat, K. B. Moysich, S. Ramananda, T. Johnson, J. R. Marshall, A. D. Hutson, T. S. Mang, B. C. Wilson, S. R. Gill, J. Frustino, A. Bogaards, and M. E. Reid. Autofluorescence-guided surveillance for oral cancer. Cancer Prev. Res. (Phila) 2:966–974, 2009.

    Article  Google Scholar 

  91. Jerjes, W., T. Upile, S. Akram, and C. Hopper. The surgical palliation of advanced head and neck cancer using photodynamic therapy. Clin. Oncol. 22:785–791, 2010.

    Article  CAS  Google Scholar 

  92. Jiang, X., J. Zhong, Y. Liu, H. Yu, S. Zhuo, and J. Chen. Two-photon fluorescence and second-harmonic generation imaging of collagen in human tissue based on multiphoton microscopy. Scanning 33:53–56, 2011.

    Article  PubMed  CAS  Google Scholar 

  93. Jocham, D., F. Witjes, S. Wagner, B. Zeylemaker, J. van Moorselaar, M. O. Grimm, R. Muschter, G. Popken, F. Konig, and R. Knuchel. Improved detection and treatment of bladder cancer using hexaminolevulinate imaging: a prospective, phase III multicenter study. J. Urol. 174:862–866, 2005.

    Article  PubMed  Google Scholar 

  94. Johansson, A., J. Axelsson, S. Andersson-Engels, and J. Swartling. Realtime light dosimetry software tools for interstitial photodynamic therapy of the human prostate. Med. Phys. 34:4309–4321, 2007.

    Article  PubMed  CAS  Google Scholar 

  95. Jose, J., S. Manohar, R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen. Imaging of tumor vasculature using Twente photoacoustic systems. J. Biophotonics 2:701–717, 2009.

    Article  PubMed  CAS  Google Scholar 

  96. Kara, M. A., M. Ennahachi, P. Fockens, F. J. ten Kate, and J. J. Bergman. Detection and classification of the mucosal and vascular patterns (mucosal morphology) in Barrett’s esophagus by using narrow band imaging. Gastrointest. Endosc. 64:155–166, 2006.

    Article  PubMed  Google Scholar 

  97. Kara, M. A., F. P. Peters, P. Fockens, F. J. ten Kate, and J. J. Bergman. Endoscopic video-autofluorescence imaging followed by narrow band imaging for detecting early neoplasia in Barrett’s esophagus. Gastrointest. Endosc. 64:176–185, 2006.

    Article  PubMed  Google Scholar 

  98. Kato, M., M. Kaise, J. Yonezawa, H. Toyoizumi, N. Yoshimura, Y. Yoshida, M. Kawamura, and H. Tajiri. Magnifying endoscopy with narrow-band imaging achieves superior accuracy in the differential diagnosis of superficial gastric lesions identified with white-light endoscopy: a prospective study. Gastrointest. Endosc. 72:523–529, 2010.

    Article  PubMed  Google Scholar 

  99. Kawakami, N., and A. Flugel. Knocking at the brain’s door: intravital two-photon imaging of autoreactive T cell interactions with CNS structures. Semin. Immunopathol. 32:275–287, 2010.

    Article  PubMed  Google Scholar 

  100. Keereweer, S., J. D. Kerrebijn, P. B. van Driel, B. Xie, E. L. Kaijzel, T. J. Snoeks, I. Que, M. Hutteman, J. R. van der Vorst, J. S. Mieog, A. L. Vahrmeijer, C. J. van de Velde, R. J. Baatenburg de Jong, and C. W. Lowik. Optical image-guided surgery—where do we stand? Mol. Imaging Biol. 13(199–207):2011, 2011.

    Google Scholar 

  101. Kelder, W., H. Nimura, N. Takahashi, N. Mitsumori, G. M. van Dam, and K. Yanaga. Sentinel node mapping with indocyanine green (ICG) and infrared ray detection in early gastric cancer: an accurate method that enables a limited lymphadenectomy. Eur. J. Surg. Oncol. 36:552–558, 2010.

    PubMed  CAS  Google Scholar 

  102. Kellner, U., S. Kellner, and S. Weinitz. Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration. Retina 30:6–15, 2010.

    Article  PubMed  Google Scholar 

  103. Kiesslich, R., L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P. R. Galle, and M. F. Neurath. In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy. Clin. Gastroenterol. Hepatol. 4:979–987, 2006.

    Article  PubMed  Google Scholar 

  104. Kim, C., C. Favazza, and L. V. Wang. In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem. Rev. 110:2756–2782, 2010.

    Article  PubMed  CAS  Google Scholar 

  105. Kim, D. Y., J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki. In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography. Biomed. Opt. Express 2:1504–1513, 2011.

    Article  PubMed  Google Scholar 

  106. Kim, K. H., J. A. Burns, J. J. Bernstein, G. N. Maguluri, B. H. Park, and J. F. de Boer. In vivo 3D human vocal fold imaging with polarization sensitive optical coherence tomography and a MEMS scanning catheter. Opt. Express 18:14644–14653, 2010.

    Article  PubMed  CAS  Google Scholar 

  107. König, K., H. Breunig, R. Bückle, M. Kellner Höfer, M. Weinigel, E. Büttner, W. Sterry, and J. Lademann. Optical skin biopsies by clinical CARS and multiphoton fluorescence/SHG tomography. Laser Phys. Lett. 8:465–468, 2011.

    Article  CAS  Google Scholar 

  108. Konig, K., and I. Riemann. High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J. Biomed. Opt. 8:432–439, 2003.

    Article  PubMed  Google Scholar 

  109. Konig, K., M. Speicher, R. Buckle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz. Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases. J. Biophotonics 2:389–397, 2009.

    Article  PubMed  Google Scholar 

  110. Korde, V. R., E. Liebmann, and J. K. Barton. Design of a handheld optical coherence microscopy endoscope. J. Biomed. Opt. 16:066018, 2011.

    Article  PubMed  Google Scholar 

  111. Koyama, Y., V. S. Talanov, M. Bernardo, Y. Hama, C. A. Regino, M. W. Brechbiel, P. L. Choyke, and H. Kobayashi. A dendrimer-based nanosized contrast agent dual-labeled for magnetic resonance and optical fluorescence imaging to localize the sentinel lymph node in mice. J. Magn. Reson. Imaging 25:866–871, 2007.

    Article  PubMed  Google Scholar 

  112. Kraft, M., C. S. Betz, A. Leunig, and C. Arens. Value of fluorescence endoscopy for the early diagnosis of laryngeal cancer and its precursor lesions. Head Neck 33:941–948, 2011.

    Article  PubMed  Google Scholar 

  113. Kubota, K., J. Kita, M. Shimoda, K. Rokkaku, M. Kato, Y. Iso, and T. Sawada. Intraoperative assessment of reconstructed vessels in living-donor liver transplantation, using a novel fluorescence imaging technique. J. Hepatobiliary Pancreat. Surg. 13:100–104, 2006.

    Article  PubMed  Google Scholar 

  114. Kuroiwa, T., Y. Kajimoto, and T. Ohta. Development of a fluorescein operative microscope for use during malignant glioma surgery: a technical note and preliminary report. Surg. Neurol. 50:41–48, 1998; discussion 48–49.

    Article  PubMed  CAS  Google Scholar 

  115. Kwee, T. C., S. Basu, B. Saboury, V. Ambrosini, D. A. Torigian, and A. Alavi. A new dimension of FDG-PET interpretation: assessment of tumor biology. Eur. J. Nucl. Med. Mol. Imaging 38:1158–1170, 2011.

    Article  PubMed  Google Scholar 

  116. Lam, S., T. Kennedy, M. Unger, Y. E. Miller, D. Gelmont, V. Rusch, B. Gipe, D. Howard, J. C. LeRiche, A. Coldman, and A. F. Gazdar. Localization of bronchial intraepithelial neoplastic lesions by fluorescence bronchoscopy. Chest 113:696–702, 1998.

    Article  PubMed  CAS  Google Scholar 

  117. Lane, P. M., T. Gilhuly, P. Whitehead, H. Zeng, C. F. Poh, S. Ng, P. M. Williams, L. Zhang, M. P. Rosin, and C. E. MacAulay. Simple device for the direct visualization of oral-cavity tissue fluorescence. J. Biomed. Opt. 11:024006, 2006.

    Article  PubMed  Google Scholar 

  118. Le Harzic, R., I. Riemann, M. Weinigel, K. Konig, and B. Messerschmidt. Rigid and high-numerical-aperture two-photon fluorescence endoscope. Appl. Opt. 48:3396–3400, 2009.

    Article  PubMed  Google Scholar 

  119. Le, T. T., T. B. Huff, and J. X. Cheng. Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis. BMC Cancer 9:42, 2009.

    Article  PubMed  CAS  Google Scholar 

  120. Lee, K. S., K. P. Thompson, P. Meemon, and J. P. Rolland. Cellular resolution optical coherence microscopy with high acquisition speed for in vivo human skin volumetric imaging. Opt. Lett. 36:2221–2223, 2011.

    Article  PubMed  Google Scholar 

  121. Lee, P., R. M. van den Berg, S. Lam, A. F. Gazdar, K. Grunberg, A. McWilliams, J. Leriche, P. E. Postmus, and T. G. Sutedja. Color fluorescence ratio for detection of bronchial dysplasia and carcinoma in situ. Clin. Cancer Res. 15:4700–4705, 2009.

    Article  PubMed  CAS  Google Scholar 

  122. Leunig, A., C. S. Betz, M. Mehlmann, H. Stepp, S. Arbogast, G. Grevers, and R. Baumgartner. Detection of squamous cell carcinoma of the oral cavity by imaging 5-aminolevulinic acid-induced protoporphyrin IX fluorescence. Laryngoscope 110:78–83, 2000.

    Article  PubMed  CAS  Google Scholar 

  123. Li, L., K. Maslov, G. Ku, and L. V. Wang. Three-dimensional combined photoacoustic and optical coherence microscopy for in vivo microcirculation studies. Opt. Express 17:16450–16455, 2009.

    Article  PubMed  CAS  Google Scholar 

  124. Lim, L. G., M. Bajbouj, S. von Delius, and A. Meining. Fluorescein-enhanced autofluorescence imaging for accurate differentiation of neoplastic from non-neoplastic colorectal polyps: a feasibility study. Endoscopy 43:419–424, 2011.

    Article  PubMed  CAS  Google Scholar 

  125. Lim, R. S., A. Kratzer, N. P. Barry, S. Miyazaki-Anzai, M. Miyazaki, W. W. Mantulin, M. Levi, E. O. Potma, and B. J. Tromberg. Multimodal CARS microscopy determination of the impact of diet on macrophage infiltration and lipid accumulation on plaque formation in ApoE-deficient mice. J. Lipid Res. 51:1729–1737, 2010.

    Article  PubMed  CAS  Google Scholar 

  126. Lim, V. Y., L. Buellesfeld, and E. Grube. Images in cardiology. Optical coherence tomography imaging of thrombus protrusion through stent struts after stenting in acute coronary syndrome. Heart 92:409, 2006.

    Article  PubMed  CAS  Google Scholar 

  127. Lopez, R. F. V., N. Lange, R. Guy, and M. V. L. B. Bentley. Photodynamic therapy of skin cancer: controlled drug delivery of 5-ALA and its esters. Adv. Drug Deliv. Rev. 56:77–94, 2004.

    Article  PubMed  CAS  Google Scholar 

  128. Luck, B. L., K. D. Carlson, A. C. Bovik, and R. R. Richards-Kortum. An image model and segmentation algorithm for reflectance confocal images of in vivo cervical tissue. IEEE Trans. Image Process 14:1265–1276, 2005.

    Article  PubMed  Google Scholar 

  129. Maitland, K. C., A. M. Gillenwater, M. D. Williams, A. K. El-Naggar, M. R. Descour, and R. R. Richards-Kortum. In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope. Oral Oncol. 44:1059–1066, 2008.

    Article  PubMed  Google Scholar 

  130. Malmstrom, P. U., M. Grabe, E. S. Haug, P. Hellstrom, G. G. Hermann, K. Mogensen, M. Raitanen, and R. Wahlqvist. Role of hexaminolevulinate-guided fluorescence cystoscopy in bladder cancer: critical analysis of the latest data and European guidance. Scand. J. Urol. Nephrol., 2011.

  131. Marschall, S., B. Sander, M. Mogensen, T. M. Jorgensen, and P. E. Andersen. Optical coherence tomography-current technology and applications in clinical and biomedical research. Anal. Bioanal. Chem. 400:2699–2720, 2011.

    Article  PubMed  CAS  Google Scholar 

  132. Menard-Moyon, C., K. Kostarelos, M. Prato, and A. Bianco. Functionalized carbon nanotubes for probing and modulating molecular functions. Chem. Biol. 17:107–115, 2010.

    Article  PubMed  CAS  Google Scholar 

  133. Miller, J. C., A. J. Fischman, S. L. Aquino, M. A. Blake, J. H. Thrall, and S. I. Lee. FDG-PET CT for tumor imaging. J. Am. Coll. Radiol. 4:256–259, 2007.

    Article  PubMed  Google Scholar 

  134. Moghissi, K., K. Dixon, M. Stringer, and J. A. Thorpe. Photofrin PDT for early stage oesophageal cancer: long term results in 40 patients and literature review. Photodiagnosis Photodyn. Ther. 6:159–166, 2009.

    Article  PubMed  CAS  Google Scholar 

  135. Muller, M. G., T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, R. R. Dasari, S. M. Shapshay, and M. S. Feld. Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma. Cancer 97:1681–1692, 2003.

    Article  PubMed  Google Scholar 

  136. Nabavi, A., H. Thurm, B. Zountsas, T. Pietsch, H. Lanfermann, U. Pichlmeier, and M. Mehdorn. Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: a phase ii study. Neurosurgery 65:1070–1076, 2009; discussion 1076–1077.

    Article  PubMed  Google Scholar 

  137. Nakada, T. Clinical application of high and ultra high-field MRI. Brain Dev. 29:325–335, 2007.

    Article  PubMed  Google Scholar 

  138. Nguyen, F. T., A. M. Zysk, J. G. Kotynek, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, J. E. Chaney, and S. A. Boppart. Proceedings of SPIE 6430, 64300H.

  139. Nguyen, N. Q., A. V. Biankin, R. W. Leong, D. K. Chang, P. H. Cosman, P. Delaney, J. G. Kench, and N. D. Merrett. Real time intraoperative confocal laser microscopy-guided surgery. Ann. Surg. 249:735–737, 2009.

    Article  PubMed  Google Scholar 

  140. Nguyen, Q. T., E. S. Olson, T. A. Aguilera, T. Jiang, M. Scadeng, L. G. Ellies, and R. Y. Tsien. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc. Natl. Acad. Sci. USA 107:4317–4322, 2010.

    Article  PubMed  CAS  Google Scholar 

  141. Niederhauser, J. J., M. Jaeger, R. Lemor, P. Weber, and M. Frenz. Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo. IEEE Trans. Med. Imaging 24:436–440, 2005.

    Article  PubMed  Google Scholar 

  142. Nimsky, C., O. Ganslandt, B. von Keller, and R. Fahlbusch. Intraoperative high-field MRI: anatomical and functional imaging. Acta Neurochir. Suppl. 98:87–95, 2006.

    Article  PubMed  CAS  Google Scholar 

  143. Noppen, M., G. Stratakos, S. Verbanck, J. D’Haese, M. Meysman, and W. Vincken. Fluorescein-enhanced autofluorescence thoracoscopy in primary spontaneous pneumothorax. Am. J. Respir. Crit. Care Med. 170:680–682, 2004.

    Article  PubMed  Google Scholar 

  144. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Meth. 7:603–614, 2010.

    Article  CAS  Google Scholar 

  145. Ntziachristos, V., and D. Razansky. Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem. Rev. 110:2783–2794, 2010.

    Article  PubMed  CAS  Google Scholar 

  146. Ntziachristos, V., G. Turner, J. Dunham, S. Windsor, A. Soubret, J. Ripoll, and H. A. Shih. Planar fluorescence imaging using normalized data. J. Biomed. Opt. 10:064007, 2005.

    Article  PubMed  Google Scholar 

  147. Ntziachristos, V., A. G. Yodh, M. Schnall, and B. Chance. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc. Natl. Acad. Sci. USA 97:2767–2772, 2000.

    Article  PubMed  CAS  Google Scholar 

  148. Ogawa, M., C. A. Regino, J. Seidel, M. V. Green, W. Xi, M. Williams, N. Kosaka, P. L. Choyke, and H. Kobayashi. Dual-modality molecular imaging using antibodies labeled with activatable fluorescence and a radionuclide for specific and quantitative targeted cancer detection. Bioconjug. Chem. 20:2177–2184, 2009.

    Article  PubMed  CAS  Google Scholar 

  149. Orrison, Jr., W. W., K. V. Snyder, L. N. Hopkins, C. J. Roach, E. N. Ringdahl, R. Nazir, and E. H. Hanson. Whole-brain dynamic CT angiography and perfusion imaging. Clin. Radiol. 66:566–574, 2011.

    Article  PubMed  Google Scholar 

  150. Parekh, S. H., Y. J. Lee, K. A. Aamer, and M. T. Cicerone. Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy. Biophys. J. 99:2695–2704, 2010.

    Article  PubMed  CAS  Google Scholar 

  151. Pedrosa, M. C., B. A. Barth, D. J. Desilets, V. Kaul, S. R. Kethu, P. R. Pfau, J. L. Tokar, S. Varadarajulu, A. Wang, L. M. Wong Kee Song, and S. A. Rodriguez. Enhanced ultrasound imaging. Gastrointest. Endosc. 73:857–860, 2011.

    Article  PubMed  Google Scholar 

  152. Placantonakis, D. G., A. Tabaee, V. K. Anand, D. Hiltzik, and T. H. Schwartz. Safety of low-dose intrathecal fluorescein in endoscopic cranial base surgery. Neurosurgery 61:161–165, 2007; discussion 165–166.

    Article  PubMed  Google Scholar 

  153. Pliss, A., A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad. Biophotonic probing of macromolecular transformations during apoptosis. Proc. Natl. Acad. Sci. USA 107:12771–12776, 2010.

    Article  PubMed  CAS  Google Scholar 

  154. Pohl, H., T. Rosch, M. Vieth, M. Koch, V. Becker, M. Anders, A. C. Khalifa, and A. Meining. Miniprobe confocal laser microscopy for the detection of invisible neoplasia in patients with Barrett’s oesophagus. Gut 57:1648–1653, 2008.

    Article  PubMed  CAS  Google Scholar 

  155. Pysz, M. A., and J. K. Willmann. Targeted contrast-enhanced ultrasound: an emerging technology in abdominal and pelvic imaging. Gastroenterology 140:785–790, 2011.

    Article  PubMed  Google Scholar 

  156. Reimers, B., D. Nikas, E. Stabile, L. Favero, S. Sacca, A. Cremonesi, and P. Rubino. Preliminary experience with optical coherence tomography imaging to evaluate carotid artery stents: safety, feasibility and techniques. EuroIntervention 7:98–105, 2011.

    Article  PubMed  Google Scholar 

  157. Rex, D. K., and C. C. Helbig. High yields of small and flat adenomas with high-definition colonoscopes using either white light or narrow band imaging. Gastroenterology 133:42–47, 2007.

    Article  PubMed  Google Scholar 

  158. Rice, W. L., D. L. Kaplan, and I. Georgakoudi. Two-photon microscopy for non-invasive, quantitative monitoring of stem cell differentiation. PLoS one 5:e10075, 2010.

    Article  PubMed  CAS  Google Scholar 

  159. Rimpiläinen, R., N. Hautala, J. Koskenkari, J. Rimpiläinen, P. Ohtonen, P. Mustonen, H. Surcel, E. Savolainen, M. Mosorin, and T. Ala-Kokko. Comparison of use of minimized cardiopulmonary bypass with conventional techniques on the incidence of retinal microemboli during aortic valve replacement surgery. Perfusion 26:479–486, 2011.

    Article  PubMed  Google Scholar 

  160. Ris, H. B., T. Krueger, A. Giger, C. K. Lim, J. C. Stewart, U. Althaus, and H. J. Altermatt. Photodynamic therapy with mTHPC and polyethylene glycol-derived mTHPC: a comparative study on human tumour xenografts. Br. J. Cancer 79:1061–1066, 1999.

    Article  PubMed  CAS  Google Scholar 

  161. Roblyer, D., R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater. Multispectral optical imaging device for in vivo detection of oral neoplasia. J. Biomed. Opt. 13:024019, 2008.

    Article  PubMed  Google Scholar 

  162. Rogart, J. N., J. Nagata, C. S. Loeser, R. D. Roorda, H. Aslanian, M. E. Robert, W. R. Zipfel, and M. H. Nathanson. Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo. Clin. Gastroenterol. Hepatol. 6:95–101, 2008.

    Article  PubMed  Google Scholar 

  163. Saftoiu, A. State-of-the-art imaging techniques in endoscopic ultrasound. World J. Gastroenterol. 17:691–696, 2011.

    Article  PubMed  Google Scholar 

  164. Sahoo, N. G., H. Bao, Y. Pan, M. Pal, M. Kakran, H. K. Cheng, L. Li, and L. P. Tan. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chem Commun. (Camb.) 47:5235–5237, 2011.

    Article  CAS  Google Scholar 

  165. Sanai, N., L. A. Snyder, N. J. Honea, S. W. Coons, J. M. Eschbacher, K. A. Smith, and R. F. Spetzler. Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas. J. Neurosurg. 115:740–748, 2011.

    Article  PubMed  CAS  Google Scholar 

  166. Sandberg, C., J. Paoli, M. Gillstedt, C. B. Halldin, O. Larko, A. M. Wennberg, and M. B. Ericson. Fluorescence diagnostics of basal cell carcinomas comparing methyl-aminolaevulinate and aminolaevulinic acid and correlation with visual clinical tumour size. Acta Derm. Venereol. 91:398–403, 2011.

    Article  PubMed  CAS  Google Scholar 

  167. Scepanovic, O. R., M. Fitzmaurice, A. Miller, C. R. Kong, Z. Volynskaya, R. R. Dasari, J. R. Kramer, and M. S. Feld. Multimodal spectroscopy detects features of vulnerable atherosclerotic plaque. J. Biomed. Opt. 16:011009, 2011.

    Article  PubMed  CAS  Google Scholar 

  168. Schaafsma, B. E., J. S. D. Mieog, M. Hutteman, J. R. van der Vorst, P. J. K. Kuppen, C. W. G. M. Löwik, J. V. Frangioni, C. J. H. van de Velde, and A. L. Vahrmeijer. The clinical use of indocyanine green as a near infrared fluorescent contrast agent for image guided oncologic surgery. J. Surg. Oncol. 104(3):323–332, 2011.

    Article  PubMed  CAS  Google Scholar 

  169. Scherschel, J. A., and M. Rubart. Cardiovascular imaging using two-photon microscopy. Microsc. Microanal. 14:492–506, 2008.

    Article  PubMed  CAS  Google Scholar 

  170. Schwarz, R. A., W. Gao, C. Redden Weber, C. Kurachi, J. J. Lee, A. K. El-Naggar, R. Richards-Kortum, and A. M. Gillenwater. Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy. Cancer 115:1669–1679, 2009.

    Article  PubMed  Google Scholar 

  171. Schwarz, R. A., W. Gao, V. M. Stepanek, T. T. Le, V. S. Bhattar, M. D. Williams, J. K. Wu, N. Vigneswaran, K. Adler-Storthz, A. M. Gillenwater, and R. Richards-Kortum. Prospective evaluation of a portable depth-sensitive optical spectroscopy device to identify oral neoplasia. Biomed. Opt. Express 2:89–99, 2010.

    Article  PubMed  Google Scholar 

  172. Sevick-Muraca, E. M., R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad. Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study. Radiology 246:734–741, 2008.

    Article  PubMed  Google Scholar 

  173. Shakhov, A. V., A. B. Terentjeva, V. A. Kamensky, L. B. Snopova, V. M. Gelikonov, F. I. Feldchtein, and A. M. Sergeev. Optical coherence tomography monitoring for laser surgery of laryngeal carcinoma. J. Surg. Oncol. 77:253–258, 2001.

    Article  PubMed  CAS  Google Scholar 

  174. Shao, X., W. Zheng, and Z. Huang. In vivo diagnosis of colonic precancer and cancer using near-infrared autofluorescence spectroscopy and biochemical modeling. J. Biomed. Opt. 16:067005, 2011.

    Article  PubMed  CAS  Google Scholar 

  175. Shin, D., N. Vigneswaran, A. Gillenwater, and R. Richards-Kortum. Advances in fluorescence imaging techniques to detect oral cancer and its precursors. Future Oncol. 6:1143–1154, 2010.

    Article  PubMed  Google Scholar 

  176. Shrestha, S., B. E. Applegate, J. Park, X. Xiao, P. Pande, and J. A. Jo. High-speed multispectral fluorescence lifetime imaging implementation for in vivo applications. Opt. Lett. 35:2558–2560, 2010.

    Article  PubMed  CAS  Google Scholar 

  177. Spaide, R. F. Peripheral areas of nonperfusion in treated central retinal vein occlusion as imaged by wide-field fluorescein angiography. Retina 31:829–837, 2011.

    Article  PubMed  Google Scholar 

  178. Standish, B. A., K. K. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. Wood, B. C. Wilson, I. A. Vitkin, and V. X. Yang. Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study. Cancer Res. 68:9987–9995, 2008.

    Article  PubMed  CAS  Google Scholar 

  179. Steinkamp, J. A., and C. C. Stewart. Dual-laser, differential fluorescence correction method for reducing cellular background autofluorescence. Cytometry 7:566–574, 1986.

    Article  PubMed  CAS  Google Scholar 

  180. Stockhammer, F., M. Misch, P. Horn, A. Koch, N. Fonyuy, and M. Plotkin. Association of F18-fluoro-ethyl-tyrosin uptake and 5-aminolevulinic acid-induced fluorescence in gliomas. Acta Neurochir. (Wien) 151:1377–1383, 2009.

    Article  Google Scholar 

  181. Stummer, W., U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H. J. Reulen. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 7:392–401, 2006.

    Article  PubMed  CAS  Google Scholar 

  182. Sun, Y., J. Phipps, D. S. Elson, H. Stoy, S. Tinling, J. Meier, B. Poirier, F. S. Chuang, D. G. Farwell, and L. Marcu. Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma. Opt. Lett. 34:2081–2083, 2009.

    Article  PubMed  CAS  Google Scholar 

  183. Svensson, T., S. Andersson-Engels, M. Einarsdottir, and K. Svanberg. In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy. J. Biomed. Opt. 12:014022, 2007.

    Article  PubMed  Google Scholar 

  184. Swartling, J., J. Axelsson, G. Ahlgren, K. M. Kalkner, S. Nilsson, S. Svanberg, K. Svanberg, and S. Andersson-Engels. System for interstitial photodynamic therapy with online dosimetry: first clinical experiences of prostate cancer. J. Biomed. Opt. 15:058003, 2010.

    Article  PubMed  Google Scholar 

  185. Takahashi, M., T. Ishikawa, K. Higashidani, and H. Katoh. SPY: an innovative intra-operative imaging system to evaluate graft patency during off-pump coronary artery bypass grafting. Interact. Cardiovasc. Thorac. Surg. 3:479–483, 2004.

    Article  PubMed  Google Scholar 

  186. Takeuchi, Y., N. Hanaoka, M. Hanafusa, R. Ishihara, K. Higashino, H. Iishi, and N. Uedo. Autofluorescence imaging of early colorectal cancer. J. Biophotonics 4:490–497, 2011.

    Article  PubMed  Google Scholar 

  187. Tan, J., M. A. Quinn, J. M. Pyman, P. M. Delaney, and W. J. McLaren. Detection of cervical intraepithelial neoplasia in vivo using confocal endomicroscopy. BJOG 116:1663–1670, 2009.

    Article  PubMed  CAS  Google Scholar 

  188. Tan, O., G. Li, A. T. Lu, R. Varma, and D. Huang. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology 115:949–956, 2008.

    Article  PubMed  Google Scholar 

  189. Tanaka, A., K. Shimada, G. J. Tearney, H. Kitabata, H. Taguchi, S. Fukuda, M. Kashiwagi, T. Kubo, S. Takarada, K. Hirata, M. Mizukoshi, J. Yoshikawa, B. E. Bouma, and T. Akasaka. Conformational change in coronary artery structure assessed by optical coherence tomography in patients with vasospastic angina. J. Am. Coll. Cardiol. 58:1608–1613, 2011.

    Article  PubMed  Google Scholar 

  190. Telenkov, S. A., D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner. Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue. Phys. Med. Biol. 49:111–119, 2004.

    Article  PubMed  Google Scholar 

  191. Terasaki, H., Y. Miyake, and S. Awaya. Fluorescein angiography of peripheral retina and pars plana during vitrectomy for proliferative diabetic retinopathy. Am. J. Ophthalmol. 123:370–376, 1997.

    PubMed  CAS  Google Scholar 

  192. Theer, P., M. T. Hasan, and W. Denk. Two-photon imaging to a depth of 1000 mu m in living brains by use of a Ti : Al2O3 regenerative amplifier. Opt. Lett. 28:1022–1024, 2003.

    Article  PubMed  CAS  Google Scholar 

  193. Thekkek, N., and R. Richards-Kortum. Optical imaging for cervical cancer detection: solutions for a continuing global problem. Nat. Rev. Cancer 8:725–731, 2008.

    Article  PubMed  CAS  Google Scholar 

  194. Themelis, G., J. S. Yoo, K. Soh, R. B. Schulz, and V. Ntziachristos. Real-time intraoperative fluorescence imaging system using light-absorption correction (Journal Paper). J. Biomed. Opt. 14:064012, 2009.

    Article  PubMed  Google Scholar 

  195. Thiberville, L., M. Salaun, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly. Confocal fluorescence endomicroscopy of the human airways. Proc. Am. Thorac. Soc. 6:444–449, 2009.

    Article  PubMed  Google Scholar 

  196. Thong, P. S., M. Olivo, K. W. Kho, W. Zheng, K. Mancer, M. Harris, and K. C. Soo. Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity. J. Biomed. Opt. 12:014007, 2007.

    Article  PubMed  Google Scholar 

  197. Thorling, C. A., Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts. Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo. J. Biomed. Opt. 16:086013, 2011.

    Article  PubMed  CAS  Google Scholar 

  198. Tong, L., Q. Wei, A. Wei, and J.-X. Cheng. Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem. Photobiol. 85:21–32, 2009.

    Article  PubMed  CAS  Google Scholar 

  199. Tonn, J. C., and W. Stummer. Fluorescence-guided resection of malignant gliomas using 5-aminolevulinic acid: practical use, risks, and pitfalls. Clin. Neurosurg. 55:20–26, 2008.

    PubMed  Google Scholar 

  200. Tosi, A., A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu. Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements. Opt. Express 19:10735–10746, 2011.

    Article  PubMed  Google Scholar 

  201. Trattnig, S., K. Pinker, A. Ba-Ssalamah, and I. M. Nobauer-Huhmann. The optimal use of contrast agents at high field MRI. Eur. Radiol. 16:1280–1287, 2006.

    Article  PubMed  Google Scholar 

  202. Troyan, S. L., V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, and J. V. Frangioni. The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann. Surg. Oncol. 16:2943–2952, 2009.

    Article  PubMed  Google Scholar 

  203. Uchiyama, K., M. Ueno, S. Ozawa, S. Kiriyama, Y. Shigekawa, and H. Yamaue. Combined use of contrast-enhanced intraoperative ultrasonography and a fluorescence navigation system for identifying hepatic metastases. World J. Surg. 34:2953–2959, 2010.

    Article  PubMed  Google Scholar 

  204. Van Dam, G. M., G. Themelis, L. M. Crane, N. Harlaar, J. S. De Jong, H. J. Arts, J. Bart, P. Low, and V. Ntziachristos. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat. Med. 17:1315–1349, 2011.

    Article  PubMed  CAS  Google Scholar 

  205. Vargas, G., T. Shilagard, K. H. Ho, and S. McCammon. Multiphoton autofluorescence microscopy and second harmonic generation microscopy of oral epithelial neoplasms. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6311–6313, 2009.

  206. Venkatesh, K., M. Cohen, C. Evans, P. Delaney, S. Thomas, C. Taylor, A. Abou-Taleb, R. Kiesslich, and M. Thomson. Feasibility of confocal endomicroscopy in the diagnosis of pediatric gastrointestinal disorders. World J. Gastroenterol. 15:2214–2219, 2009.

    Article  PubMed  Google Scholar 

  207. Vinegoni, C., T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart. Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy. Appl. Phys. Lett. 88:053901, 2006.

    Article  CAS  Google Scholar 

  208. Wada, Y., S. E. Kudo, H. Kashida, N. Ikehara, H. Inoue, F. Yamamura, K. Ohtsuka, and S. Hamatani. Diagnosis of colorectal lesions with the magnifying narrow-band imaging system. Gastrointest. Endosc. 70:522–531, 2009.

    Article  PubMed  Google Scholar 

  209. Wang, H. W., Y. Fu, T. B. Huff, T. T. Le, H. Wang, and J. X. Cheng. Chasing lipids in health and diseases by coherent anti-Stokes Raman scattering microscopy. Vib. Spectrosc. 50:160–167, 2009.

    Article  PubMed  CAS  Google Scholar 

  210. Waseda, K., J. Ako, T. Hasegawa, Y. Shimada, F. Ikeno, T. Ishikawa, Y. Demura, K. Hatada, P. G. Yock, Y. Honda, P. J. Fitzgerald, and M. Takahashi. Intraoperative fluorescence imaging system for on-site assessment of off-pump coronary artery bypass graft. JACC Cardiovasc. Imaging 2:604–612, 2009.

    Article  PubMed  Google Scholar 

  211. Widhalm, G., S. Wolfsberger, G. Minchev, A. Woehrer, M. Krssak, T. Czech, D. Prayer, S. Asenbaum, J. A. Hainfellner, and E. Knosp. 5 Aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement. Cancer 116:1545–1552, 2010.

    Article  PubMed  CAS  Google Scholar 

  212. Witjes, J. A., and J. Douglass. The role of hexaminolevulinate fluorescence cystoscopy in bladder cancer. Nature clinical practice. Urology 4:542–549, 2007.

    PubMed  CAS  Google Scholar 

  213. Witjes, J. A., J. P. Redorta, D. Jacqmin, F. Sofras, P. U. Malmstrom, C. Riedl, D. Jocham, G. Conti, F. Montorsi, H. C. Arentsen, D. Zaak, A. H. Mostafid, and M. Babjuk. Hexaminolevulinate-guided fluorescence cystoscopy in the diagnosis and follow-up of patients with non-muscle-invasive bladder cancer: review of the evidence and recommendations. Eur. Urol. 57:607–614, 2010.

    Article  PubMed  Google Scholar 

  214. Wolfsen, H. C., J. E. Crook, M. Krishna, S. R. Achem, K. R. Devault, E. P. Bouras, D. S. Loeb, M. E. Stark, T. A. Woodward, L. L. Hemminger, F. K. Cayer, and M. B. Wallace. Prospective, controlled tandem endoscopy study of narrow band imaging for dysplasia detection in Barrett’s Esophagus. Gastroenterology 135:24–31, 2008.

    Article  PubMed  Google Scholar 

  215. Won, Y., S. Hong, H. Yu, Y. Kwon, S. Yun, S. Lee, and J. Lee. Photodetection of basal cell carcinoma using methyl 5 aminolaevulinate induced protoporphyrin IX based on fluorescence image analysis. Clin. Exp. Dermatol. 32:423–429, 2007.

    Article  PubMed  CAS  Google Scholar 

  216. Xu, C., J. M. Schmitt, T. Akasaka, T. Kubo, and K. Huang. Automatic detection of stent struts with thick neointimal growth in intravascular optical coherence tomography image sequences. Phys. Med. Biol. 56:6665–6675, 2011.

    Article  PubMed  Google Scholar 

  217. Yang, J. M., K. Maslov, H. C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang. Photoacoustic endoscopy. Opt. Lett. 34:1591–1593, 2009.

    Article  PubMed  Google Scholar 

  218. Yang, V. X., S. J. Tang, M. L. Gordon, B. Qi, G. Gardiner, M. Cirocco, P. Kortan, G. B. Haber, G. Kandel, I. A. Vitkin, B. C. Wilson, and N. E. Marcon. Endoscopic Doppler optical coherence tomography in the human GI tract: initial experience. Gastrointest. Endosc. 61:879–890, 2005.

    Article  PubMed  Google Scholar 

  219. Yi, K., M. Mujat, B. H. Park, W. Sun, J. W. Miller, J. M. Seddon, L. H. Young, J. F. de Boer, and T. C. Chen. Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age-related macular degeneration. Br. J. Ophthalmol. 93:176–181, 2009.

    Article  PubMed  CAS  Google Scholar 

  220. Zargi, M., I. Fajdiga, and L. Smid. Autofluorescence imaging in the diagnosis of laryngeal cancer. Eur. Arch. Otorhinolaryngol. 257:17–23, 2000.

    Article  PubMed  CAS  Google Scholar 

  221. Zaric, B., H. D. Becker, B. Perin, A. Jovelic, G. Stojanovic, M. D. Ilic, Z. Eri, M. Panjkovic, D. Obradovic, and M. Antonic. Narrow band imaging videobronchoscopy improves assessment of lung cancer extension and influences therapeutic strategy. Jpn. J. Clin. Oncol. 39:657–663, 2009.

    Article  PubMed  Google Scholar 

  222. Zhao, B. Z., and Y. Y. He. Recent advances in the prevention and treatment of skin cancer using photodynamic therapy. Expert Rev. Anticancer Ther. 10:1797–1809, 2010.

    Article  PubMed  CAS  Google Scholar 

  223. Zhao, Y., H. Nakamura, and R. J. Gordon. Development of a versatile two-photon endoscope for biological imaging. Biomed. Opt. Express 1:1159–1172, 2010.

    Article  PubMed  Google Scholar 

  224. Zheng, W., M. Harris, K. W. Kho, P. S. Thong, A. Hibbs, M. Olivo, and K. C. Soo. Confocal endomicroscopic imaging of normal and neoplastic human tongue tissue using ALA-induced-PPIX fluorescence: a preliminary study. Oncol. Rep. 12:397–401, 2004.

    PubMed  Google Scholar 

  225. Zhu, J., B. Lee, K. K. Buhman, and J. X. Cheng. A dynamic, cytoplasmic triacylglycerol pool in enterocytes revealed by ex vivo and in vivo coherent anti-Stokes Raman scattering imaging. J. Lipid Res. 50:1080–1089, 2009.

    Article  PubMed  CAS  Google Scholar 

  226. Zimmerley, M., C. Y. Lin, D. C. Oertel, J. M. Marsh, J. L. Ward, and E. O. Potma. Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy. J. Biomed. Opt. 14:044019, 2009.

    Article  PubMed  CAS  Google Scholar 

  227. Zysk, A. M., F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart. Optical coherence tomography: a review of clinical development from bench to bedside. J. Biomed. Opt. 12:051403, 2007.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilis Ntziachristos.

Additional information

Associate Editor Daniel Elson oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarantopoulos, A., Beziere, N. & Ntziachristos, V. Optical and Opto-Acoustic Interventional Imaging. Ann Biomed Eng 40, 346–366 (2012). https://doi.org/10.1007/s10439-011-0501-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0501-4

Keywords

Navigation