Skip to main content
Log in

Applying Simulated In Vivo Motions to Measure Human Knee and ACL Kinetics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Patients frequently experience anterior cruciate ligament (ACL) injuries but current ACL reconstruction strategies do not restore the native biomechanics of the knee, which can contribute to the early onset of osteoarthritis in the long term. To design more effective treatments, investigators must first understand normal in vivo knee function for multiple activities of daily living (ADLs). While the 3D kinematics of the human knee have been measured for various ADLs, the 3D kinetics cannot be directly measured in vivo. Alternatively, the 3D kinetics of the knee and its structures can be measured in an animal model by simulating and applying subject-specific in vivo joint motions to a joint using robotics. However, a suitable biomechanical surrogate should first be established. This study was designed to apply a simulated human in vivo motion to human knees to measure the kinetics of the human knee and ACL. In pursuit of establishing a viable biomechanical surrogate, a simulated in vivo ovine motion was also applied to human knees to compare the loads produced by the human and ovine motions. The motions from the two species produced similar kinetics in the human knee and ACL. The only significant difference was the intact knee compression force produced by the two input motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Allen, M. J., J. E. F. Houlton, S. B. Adams, and N. Rushton. The surgical anatomy of the stifle joint in sheep. Vet. Surg. 27:596–605, 1998.

    Article  PubMed  CAS  Google Scholar 

  2. Amis, A. A., A. M. J. Bull, and D. T. T. Lie. Biomechanics of rotational instability and anatomic anterior cruciate ligament reconstruction. Oper. Tech. Orthopaed. 15:29–35, 2005.

    Article  Google Scholar 

  3. Andriacchi, T. P., and C. O. Dyrby. Interactions between kinematics and loading during walking for the normal and ACL deficient knee. J. Biomech. 38:293–298, 2005.

    Article  PubMed  Google Scholar 

  4. Andriacchi, T. P., S. Koo, and S. F. Scanlan. Gait mechanics influence healthy cartilage morphology and osteoarthritis of the knee. J. Bone Joint Surg. A 91:95–101, 2009.

    Article  Google Scholar 

  5. Appleyard, R. C., D. Burkhardt, P. Ghosh, R. Read, M. Cake, M. V. Swain, and G. A. C. Murrell. Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis. Osteoarthr. Cartilage 11:65–77, 2003.

    Article  CAS  Google Scholar 

  6. Berchuck, M., T. P. Andriacchi, B. R. Bach, and B. Reider. Gait adaptations by patients who have a deficient anterior cruciate ligament. J. Bone Joint Surg. A 72:871–877, 1990.

    CAS  Google Scholar 

  7. Boguszewski, D. V., J. T. Shearn, C. T. Wagner, and D. L. Butler. Investigating the effects of anterior tibial translation on anterior knee force in the porcine model: Is the porcine knee ACL dependent? J. Orthopaed. Res. 29:641–646, 2011.

    Article  Google Scholar 

  8. Butler, D. L., J. T. Shearn, N. Juncosa, M. R. Dressler, and S. A. Hunter. Functional tissue engineering parameters toward designing repair and replacement strategies. Clin. Orthop. Relat. Res. 427:S190–S199, 2004.

    Google Scholar 

  9. Butler, D. L., F. R. Noyes, and E. S. Grood. Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J. Bone Joint Surg. A 62:259–270, 1980.

    CAS  Google Scholar 

  10. D’Lima, D. D., N. Steklov, B. J. Fregly, S. A. Banks, and C. W. Colwell, Jr. In vivo contact stresses during activities of daily living after knee arthroplasty. J. Orthopaed. Res. 26:1549–1555, 2008.

    Article  Google Scholar 

  11. Georgoulis, A. D., S. Ristanis, V. Chouliaras, C. Moraiti, and N. Stergiou. Tibial rotation is not restored after ACL reconstruction with a hamstring graft. Clin. Orthop. (454):89–94, 2007.

  12. Gollehon, D. L., P. A. Torzilli, and R. F. Warren. The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study. J. Bone Joint Surg. A 69:233–242, 1987.

    CAS  Google Scholar 

  13. Grood, E. S., and W. J. Suntay. A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. J. Biomech. Eng. 105:136–144, 1983.

    Article  PubMed  CAS  Google Scholar 

  14. Harrington, I. J. A bioengineering analysis of force actions at the knee in normal and pathological gait. Bio-Med. Eng. 11:167–172, 1976.

    CAS  Google Scholar 

  15. Herfat, S. T., J. T. Shearn, D. L. Bailey, R. M. Greiwe, M. T. Galloway, C. Gooch, and D. L. Butler. Effect of surgery to implant motion and force sensors on vertical ground reaction forces in the ovine model. J. Biomech. Eng. 133, 2011.

  16. Hewett, T. E., T. N. Lindenfeld, J. V. Riccobene, and F. R. Noyes. The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am. J. Sports Med. 27:699–706, 1999.

    PubMed  CAS  Google Scholar 

  17. Hunt, P., S. U. Scheffler, F. N. Unterhauser, and A. Weiler. A model of soft-tissue graft anterior cruciate ligament reconstruction in sheep. Arch. Orthop. Trauma Surg. 125:238–248, 2005.

    Article  PubMed  Google Scholar 

  18. Jomha, N. M., D. C. Borton, A. J. Clingeleffer, and L. A. Pinczewski. Long term osteoarthritic changes in anterior cruciate ligament reconstructed knees. Clin. Orthop. (358):188–193, 1999.

  19. Kanamori, A., S. L. Woo, C. B. Ma, J. Zeminski, T. W. Rudy, G. Li, and G. A. Livesay. The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: a human cadaveric study using robotic technology. Arthroscopy 16:633–639, 2000.

    Article  PubMed  CAS  Google Scholar 

  20. Kempson, G. E. Relationship between the tensile properties of articular cartilage from the human knee and age. Ann. Rheum. Dis. 41:508–511, 1982.

    Article  PubMed  CAS  Google Scholar 

  21. Kuster, M. S., G. A. Wood, G. W. Stachowiak, and A. Gächter. Joint load considerations in total knee replacement. J. Bone Joint Surg. B 79:109–113, 1997.

    Article  CAS  Google Scholar 

  22. Lafortune, M. A., P. R. Cavanagh, H. J. Sommer, III, and A. Kalenak. Three-dimensional kinematics of the human knee during walking. J. Biomech. 25:347–357, 1992.

    Article  PubMed  CAS  Google Scholar 

  23. Lohmander, L. S., A. Östenberg, M. Englund, and H. Roos. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 50:3145–3152, 2004.

    Article  PubMed  CAS  Google Scholar 

  24. Lu, Y., M. D. Markel, B. Nemke, S. Wynn, and B. Graf. Comparison of single-versus double-tunnel tendon-to-bone healing in an ovine model: a biomechanical and histological analysis. Am. J. Sports Med. 37:512–517, 2009.

    Article  PubMed  Google Scholar 

  25. Markolf, K. L., J. S. Mensch, and H. C. Amstutz. Stiffness and laxity of the knee: the contributions of the supporting structures. A quantitative in vitro study. J. Bone Joint Surg. A 58:583–594, 1976.

    CAS  Google Scholar 

  26. Morrison, J. B. The mechanics of the knee joint in relation to normal walking. J. Biomech. 3:51–61, 1970.

    Article  PubMed  CAS  Google Scholar 

  27. Munirah, S., O. C. Samsudin, H. C. Chen, S. H. Sharifah Salmah, B. S. Aminuddin, and B. H. I. Ruszymah. Articular cartilage restoration in load-bearing osteochondral defects by implantation of autologous chondrocyte-fibrin constructs: an experimental study in sheep. J. Bone Joint Surg. B. 89:1099–1109, 2007.

    Article  CAS  Google Scholar 

  28. Oakley, S. P., M. N. Lassere, I. Portek, Z. Szomor, P. Ghosh, B. W. Kirkham, G. A. C. Murrell, S. Wulf, and R. C. Appleyard. Biomechanical, histologic and macroscopic assessment of articular cartilage in a sheep model of osteoarthritis. Osteoarthr. Cartilage 12:667–679, 2004.

    Article  CAS  Google Scholar 

  29. Osterhoff, G., S. Löffler, H. Steinke, C. Feja, C. Josten, and P. Hepp. Comparative anatomical measurements of osseous structures in the ovine and human knee. Knee 18:98–103, 2011.

    Article  PubMed  Google Scholar 

  30. Piziali, R. L., W. P. Seering, D. A. Nagel, and D. J. Schurman. The function of the primary ligaments of the knee in anterior-posterior and medial-lateral motions. J. Biomech. 13:777–784, 1980.

    Article  PubMed  CAS  Google Scholar 

  31. Radford, W. J. P., A. A. Amis, and A. C. Stead. The ovine stifle as a model for human cruciate ligament surgery. Vet. Comp. Orthopaed. Traumatol. 9:134–139, 1996.

    Google Scholar 

  32. Roberts, C. S., J. F. Cumming, E. S. Grood, and F. R. Noyes. In vivo measurement of human anterior cruciate ligament forces during knee extension exercises. Trans. 40th Orthopaedic Research Society, 1994, pp. 15–84.

  33. Sakane, M., G. A. Livesay, R. J. Fox, T. W. Rudy, T. J. Runco, and S. L. Woo. Relative contribution of the ACL, MCL, and bony contact to the anterior stability of the knee. Knee Surg. Sports Traumatol. Arthrosc. 7:93–97, 1999.

    Google Scholar 

  34. Seering, W. P., R. L. Piziali, D. A. Nagel, and D. J. Schurman. The function of the primary ligaments of the knee in varus-valgus and axial rotation. J. Biomech. 13:785–794, 1980.

    Article  PubMed  CAS  Google Scholar 

  35. Tapper, J. E., S. Fukushima, H. Azuma, C. Sutherland, L. Marchuk, G. M. Thornton, J. L. Ronsky, R. Zernicke, N. G. Shrive, and C. B. Frank. Dynamic in vivo three-dimensional (3D) kinematics of the anterior cruciate ligament/medial collateral ligament transected ovine stifle joint. J. Orthopaed. Res. 26:660–672, 2008.

    Article  Google Scholar 

  36. Tapper, J. E., S. Fukushima, H. Azuma, G. M. Thornton, J. L. Ronsky, N. G. Shrive, and C. B. Frank. Dynamic in vivo kinematics of the intact ovine stifle joint. J. Orthopaed. Res. 24:782–792, 2006.

    Article  Google Scholar 

  37. Taylor, W. R., M. O. Heller, G. Bergmann, and G. N. Duda. Tibio-femoral loading during human gait and stair climbing. J. Orthopaed. Res. 22:625–632, 2004.

    Article  Google Scholar 

  38. Taylor, W. R., B. M. Poepplau, C. König, R. M. Ehrig, S. Zachow, G. N. Duda, and M. O. Heller. The medial-lateral force distribution in the ovine stifle joint during walking. J. Orthopaed. Res. 29:567–571, 2011.

    Article  Google Scholar 

  39. Thambyah, A., B. P. Pereira, and U. Wyss. Estimation of bone-on-bone contact forces in the tibiofemoral joint during walking. Knee 12:383–388, 2005.

    Article  PubMed  Google Scholar 

  40. Von Porat, A., E. M. Roos, and H. Roos. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: A study of radiographic and patient relevant outcomes. Ann. Rheum. Dis. 63:269–273, 2004.

    Article  Google Scholar 

  41. Winby, C. R., D. G. Lloyd, T. F. Besier, and T. B. Kirk. Muscle and external load contribution to knee joint contact loads during normal gait. J. Biomech. 42:2294–2300, 2009.

    Article  PubMed  CAS  Google Scholar 

  42. Woo, S. L., J. M. Hollis, D. J. Adams, R. M. Lyon, and S. Takai. Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am. J. Sports Med. 19:217–225, 1991.

    Article  PubMed  CAS  Google Scholar 

  43. Xerogeanes, J. W., R. J. Fox, Y. Takeda, H. Kim, Y. Ishebashi, G. J. Carlin, and S. L. Woo. A Functional comparison of animal anterior cruciate ligament models to the human anterior cruciate ligament. Ann. Biomed. Eng. 26:345–352, 1998.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by NIH grants EB004859 and AR056660. The authors do not have any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason T. Shearn.

Additional information

Associate Editor Catherine Disselhorst-Klug oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herfat, S.T., Boguszewski, D.V. & Shearn, J.T. Applying Simulated In Vivo Motions to Measure Human Knee and ACL Kinetics. Ann Biomed Eng 40, 1545–1553 (2012). https://doi.org/10.1007/s10439-011-0500-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0500-5

Keywords

Navigation