Skip to main content

Advertisement

Log in

Bayesian Image Analysis of Dexamethasone and Shear Stress-Induced Glucocorticoid Receptor Intracellular Movement

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Endothelial cells are continuously exposed to hemodynamic shear stress, which has been shown to induce an array of physiological responses at the cellular and molecular levels. Uniform high shear stress is protective against vascular diseases such as atherosclerosis which preferentially occur at regions of disturbed flow and low shear. The glucocorticoid receptor (GR), a member of the steroid nuclear receptors with anti-inflammatory functions, has been shown to be activated by shear stress. Using a unique expectation–maximization (EM) algorithm based on Bayesian statistics, we have developed an image analysis algorithm to quantitatively assess GR nuclear translocation based on time-lapse images of green fluorescence protein-tagged GR (GFP-GR) under continuous exposure to a shear stress of 10 or 25 dynes/cm2 as well as to Dexamethasone, a GR agonist. Average fluorescence brightness is generated for nucleus and cytoplasm. Real-time imaging of sheared cells revealed a steady and significant nuclear GFP-GR increase of approximately 20% within 2 h, compared to a rapid 60% increase in Dexamethasone-treated cells within 30 min. Furthermore, we found that that GFP-GR nuclear translocation under shear is not dependent on an intact cytoskeleton. Our image analysis algorithm provides a novel quantitative method to further study shear-sensitive mechanotransduction pathways in endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Akner, G., A. C. Wikstrom, and J. A. Gustafsson. Subcellular distribution of the glucocorticoid receptor and evidence for its association with microtubules. J. Steroid Biochem. Mol. Biol. 52(1):1–16, 1995.

    Article  PubMed  CAS  Google Scholar 

  2. Blake, G., and P. Ridker. Inflammatory bio-markers and cardiovascular risk prediction. J. Intern. Med. 252(4):283–294, 2002.

    Article  PubMed  CAS  Google Scholar 

  3. Brostjan, C., J. Anrather, V. Csizmadia, G. Natarajan, H. Winkler, et al. Glucocorticoids inhibit E-selectin expression by targeting NF-kappaB and not ATF/c-Jun. J. Immunol. 158(8):3836–3844, 1997.

    PubMed  CAS  Google Scholar 

  4. Burke, B., and C. L. Stewart. Life at the edge: the nuclear envelope and human disease. Nat. Rev. Mol. Cell Biol. 3(8):575–585, 2002.

    Article  PubMed  CAS  Google Scholar 

  5. Christopher, L. A., E. J. Delp, C. A. Bouman, C. R. Meyer, P. L. Carson. In: New approaches in {3D} ultrasound segmentation. Proceedings SPIE and IST Electronic Imaging and Technology Conference 2003: SPIE and IST; 2003.

  6. Davies, P. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75(3):519–560, 1995.

    PubMed  CAS  Google Scholar 

  7. De Sandre-Giovannoli, A., M. Chaouch, S. Kozlov, J. M. Vallat, M. Tazir, N. Kassouri, P. Szepetowski, T. Hammadouche, A. Vandenberghe, C. L. Stewart, et al. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am. J. Hum. Genet. 70(3):726–736, 2002.

    Article  PubMed  Google Scholar 

  8. Dvorak, Z., M. Modriansky, J. Ulrichova, P. Maurel, M. J. Vilarem, J. M. Pascussi, et al. Disruption of microtubules leads to glucocorticoid receptor degradation in HeLa cell line. Cell Signal. 17(2):187–196, 2005.

    Article  PubMed  CAS  Google Scholar 

  9. Eickelberg, O., M. Roth, R. Lorx, V. Bruce, J. Rudiger, M. Johnson, L. Block, et al. Ligand-independent activation of the glucocorticoid receptor by beta2-adrenergic receptor agonists in primary human lung fibroblasts and vascular smooth muscle cells. J. Biol. Chem. 274(2):1005–1010, 1999.

    Article  PubMed  CAS  Google Scholar 

  10. Eriksson, M., W. T. Brown, L. B. Gordon, M. W. Glynn, J. Singer, L. Scott, M. R. Erdos, C. M. Robbins, T. Y. Moses, P. Berglund, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423(6937):293–298, 2003.

    Article  PubMed  CAS  Google Scholar 

  11. Frangos, J. A., L. V. McIntire, and S. G. Eskin. Shear stress induces stimulation of mammalian cell metabolism. Biotechnol. Bioeng. 32:1053–1060, 1988.

    Article  PubMed  CAS  Google Scholar 

  12. Galigniana, M. D., J. L. Scruggs, J. Herrington, M. J. Welsh, C. Carter-Su, P. R. Housley, and W. B. Pratt. Heat shock protein 90-dependent (geldanamycin-inhibited) movement of the glucocorticoid receptor through the cytoplasm to the nucleus requires intact cytoskeleton. Mol. Endocrinol. 12(12):1903–1913, 1998.

    Article  PubMed  CAS  Google Scholar 

  13. Glagov, S., C. Zarins, D. Giddens, and D. Ku. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch. Pathol. Lab. Med. 112(10):1018–1031, 1988.

    PubMed  CAS  Google Scholar 

  14. Harrell, J. M., P. J. Murphy, Y. Morishima, H. Chen, J. F. Mansfield, M. D. Galigniana, and W. B. Pratt. Evidence for glucocorticoid receptor transport on microtubules by dynein. J. Biol. Chem. 279(52):54647–54654, 2004.

    Article  PubMed  CAS  Google Scholar 

  15. Inoue, H., K. Umesono, T. Nishimori, Y. Hirata, and T. Tanabe. Glucocorticoid-mediated suppression of the promoter activity of the cyclooxygenase-2 gene is modulated by expression of its receptor in vascular endothelial cells. Biochem. Biophys. Res. Commun. 254(2):292–298, 1999.

    Article  PubMed  CAS  Google Scholar 

  16. Ji, J. Y., H. Jing, and S. L. Diamond. Shear stress causes nuclear localization of endothelial glucocorticoid receptor and expression from the GRE promoter. Circ. Res. 92(3):279–285, 2003.

    Article  PubMed  CAS  Google Scholar 

  17. Ji, J. Y., R. T. Lee, L. Vergnes, L. G. Fong, C. L. Stewart, K. Reue, S. G. Young, Q. Zhang, C. M. Shanahan, and J. Lammerding. Cell nuclei spin in the absence of lamin b1. J. Biol. Chem. 282(27):20015–20026, 2007.

    Article  PubMed  CAS  Google Scholar 

  18. Ku, D., D. Giddens, C. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5(3):293–302, 1985.

    Article  PubMed  CAS  Google Scholar 

  19. Lammerding, J., P. C. Schulze, T. Takahashi, S. Kozlov, T. Sullivan, R. D. Kamm, C. L. Stewart, and R. T. Lee. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113(3):370–378, 2004.

    PubMed  CAS  Google Scholar 

  20. Marroquin, J., S. Mitter, and T. Poggio. Probabalistic solution of ill-posed problems in computational vision. J. Am. Stat. Assoc. 82:76–89, 1987.

    Google Scholar 

  21. Nishi, M., H. Ogawa, T. Ito, K. I. Matsuda, and M. Kawata. Dynamic changes in subcellular localization of mineralocorticoid receptor in living cells: in comparison with glucocorticoid receptor using dual-color labeling with green fluorescent protein spectral variants. Mol. Endocrinol. 15(7):1077–1092, 2001.

    Article  PubMed  CAS  Google Scholar 

  22. Nishi, M., N. Takenaka, N. Morita, T. Ito, H. Ozawa, and M. Kawata. Real-time imaging of glucocorticoid receptor dynamics in living neurons and glial cells in comparison with non-neural cells. Eur. J. Neurosci. 11(6):1927–1936, 1999.

    Article  PubMed  CAS  Google Scholar 

  23. Pavalko, F. M., R. L. Gerard, S. M. Ponik, P. J. Gallagher, Y. Jin, and S. M. Norvell. Fluid shear stress inhibits TNF-alpha-induced apoptosis in osteoblasts: a role for fluid shear stress-induced activation of PI3-kinase and inhibition of caspase-3. J. Cell. Physiol. 194(2):194–205, 2003.

    Article  PubMed  CAS  Google Scholar 

  24. Teichert, A. M., J. A. Scott, G. B. Robb, Y. Q. Zhou, S. N. Zhu, M. Lem, A. Keightley, B. M. Steer, A. C. Schuh, S. L. Adamson, et al. Endothelial nitric oxide synthase gene expression during murine embryogenesis: commencement of expression in the embryo occurs with the establishment of a unidirectional circulatory system. Circ. Res. 103(1):24–33, 2008.

    Article  PubMed  CAS  Google Scholar 

  25. Walker, D., H. Htun, and D. Hager. Using inducible vectors to study intracellular trafficking of GFP-tagged steroid/nuclear receptors in living cells. Methods 19(3):386–393, 1999.

    Article  PubMed  CAS  Google Scholar 

  26. Zanchi, N. E., M. A. Filho, V. Felitti, H. Nicastro, F. M. Lorenzeti, and A. H. Lancha, Jr. Glucocorticoids: extensive physiological actions modulated through multiple mechanisms of gene regulation. J. Cell. Physiol. 224(2):311–315, 2010.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Y. Ji.

Additional information

Associate Editor Scott L. Diamond oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 643 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayebosadri, A., Christopher, L. & Ji, J.Y. Bayesian Image Analysis of Dexamethasone and Shear Stress-Induced Glucocorticoid Receptor Intracellular Movement. Ann Biomed Eng 40, 1508–1519 (2012). https://doi.org/10.1007/s10439-011-0499-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0499-7

Keywords

Navigation