Skip to main content
Log in

Aortic Valve Repair via Neo-Chordae Technique: Mechanistic Insight Through Numerical Modelling

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Recently, the neo-chordae technique (NCT) was proposed to stabilize the surgical correction of isolated aortic valve (AV) prolapse. Neo-chordae are inserted into the corrected leaflet to drive its closure by minimal tensions and prevent relapses. In a previous in vitro study we analysed the NCT effects on healthy aortic roots (ARs). Here we extend that analysis via finite element models (FEMs). After successfully replicating the experimental conditions for validation purposes, we modified our AR FEM, obtaining a continent AV with minor isolated prolapse, thus representing a realistic clinical scenario. We then simulated the NCT, and systematically assessed the acute effects of changing neo-chordae length, opening angle, asymmetry and insertion on the aorta. In the baseline configuration the NCT restored physiological AV dynamics and coaptation, without inducing abnormal leaflet stresses. This outcome was notably sensitive only to neo-chordae length, suggesting that the NCT is a potentially easy-to-standardize technique. However, this parameter is crucial: major shortenings (6 mm) prevent coaptation and increase leaflet stresses by 359 kPa, beyond the yield limit. Minor shortenings (2–4 mm) only induce a negligible stress increase and mild leaflet tethering, which however may hamper the long-term surgical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Beller, C. J., M. R. Labrosse, M. J. Thubrikar, and F. Robicsek. Role of aortic root motion in the pathogenesis of aortic dissection. Circulation 109(6):763–769, 2004.

    Article  PubMed  Google Scholar 

  2. Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: part II—a structural constitutive model. J. Biomech. Eng. 122(4):327–335, 2000.

    Article  PubMed  CAS  Google Scholar 

  3. Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—part I: experimental results. J. Biomech. Eng. 122(1):23–30, 2000.

    Article  PubMed  CAS  Google Scholar 

  4. Carmody, C. J., G. Burriesci, I. C. Howard, and E. A. Patterson. An approach to the simulation of fluid–structure interaction in the aortic valve. J. Biomech. 39(1):158–169, 2006.

    Article  PubMed  CAS  Google Scholar 

  5. Conti, C. A., A. Della Corte, E. Votta, L. Del Viscovo, C. Bancone, L. S. De Santo, and A. Redaelli. Biomechanical implications of the congenital bicuspid aortic valve: a finite element study of aortic root function from in vivo data. J. Thorac. Cardiovasc. Surg. 140(4):890–896, 2010.

    Article  PubMed  Google Scholar 

  6. Conti, C. A., E. Votta, A. Della Corte, L. Del Viscovo, C. Bancone, M. Cotrufo, and A. Redaelli. Dynamic finite element analysis of the aortic root from MRI-derived parameters. Med. Eng. Phys. 32(2):212–221, 2010.

    Article  PubMed  Google Scholar 

  7. Fattouch, K., R. Sampognaro, G. Bianco, E. Navarra, M. Moscarelli, G. Speziale, and G. Ruvolo. Implantation of Gore-Tex chordae on aortic valve leaflet to treat prolapse using “the chordae technique”: surgical aspects and clinical results. Ann. Thorac. Surg. 85(6):2019–2024, 2008.

    Article  PubMed  Google Scholar 

  8. Gnyaneshwar, R., R. K. Kumar, and K. R. Balakrishnan. Dynamic analysis of the aortic valve using a finite element model. Ann. Thorac. Surg. 73(4):1122–1129, 2002.

    Article  PubMed  Google Scholar 

  9. Grande, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Stress variations in the human aortic root and valve: the role of anatomic asymmetry. Ann. Biomed. Eng. 26(4):534–545, 1998.

    Article  PubMed  CAS  Google Scholar 

  10. Grande, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Mechanisms of aortic valve incompetence: finite element modeling of aortic root dilatation. Ann. Thorac. Surg. 69(6):1851–1857, 2000.

    Article  PubMed  CAS  Google Scholar 

  11. Grande-Allen, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Re-creation of sinuses is important for sparing the aortic valve: a finite element study. J. Thorac. Cardiovasc. Surg. 119(4 Pt 1):753–763, 2000.

    Article  PubMed  CAS  Google Scholar 

  12. Grande-Allen, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Mechanisms of aortic valve incompetence: finite-element modeling of Marfan syndrome. J. Thorac. Cardiovasc. Surg. 122(5):946–954, 2001.

    Article  PubMed  CAS  Google Scholar 

  13. Gundiah, N., K. Kam, P. B. Matthews, J. Guccione, H. A. Dwyer, D. Saloner, T. A. M. Chuter, T. S. Guy, M. B. Ratcliffe, and E. E. Tseng. Asymmetric mechanical properties of porcine aortic sinuses. Ann. Thorac. Surg. 85:1631–1638, 2008.

    Article  PubMed  Google Scholar 

  14. Gundiah, N., P. B. Matthews, R. Karimi, A. Azadani, J. Guccione, T. S. Guy, D. Saloner, and E. E. Tseng. Significant material property differences between the porcine ascending aorta and aortic sinuses. J. Heart Valve Dis. 17(6):606–613, 2008.

    PubMed  Google Scholar 

  15. Holzapfel, G. A., and R. W. Ogden. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta. J. R. Soc. Interface 7:787–799, 2010.

    Article  PubMed  Google Scholar 

  16. Koch, T. M., B. D. Reddy, P. Zilla, and T. Franz. Aortic valve leaflet mechanical properties facilitate diastolic valve function. Comput. Methods Biomech. Biomed. Eng. 13(2):225–234, 2010.

    Article  CAS  Google Scholar 

  17. Kunzelman, K. S., K. J. Grande, T. E. David, R. P. Cochran, and E. D. Verrier. Aortic root and valve relationships. Impact on surgical repair. J. Thorac. Cardiovasc. Surg. 107(1):162–170, 1994.

    PubMed  CAS  Google Scholar 

  18. Labrosse, M. R., M. Boodhwani, B. Sohmer, and C. J. Beller. Modeling leaflet correction techniques in aortic valve repair: a finite element study. J. Biomech. 44(12):2292–2298, 2011.

    Article  PubMed  Google Scholar 

  19. Labrosse, M. R., K. Lobo, and C. J. Beller. Structural analysis of the natural aortic valve in dynamics: from unpressurized to physiologically loaded. J. Biomech. 43(10):1916–1922, 2010.

    Article  PubMed  Google Scholar 

  20. Lansac, E., H. S. Lim, Y. Shomura, K. H. Lim, N. T. Rice, W. Goetz, C. Acar, and C. M. Duran. A four-dimensional study of the aortic root dynamics. Eur. J. Cardiothorac. Surg. 22(4):497–503, 2002.

    Article  PubMed  CAS  Google Scholar 

  21. May-Newman, K., and F. C. Yin. A constitutive law for mitral valve tissue. J. Biomech. Eng. 120(1):38–47, 1998.

    Article  PubMed  CAS  Google Scholar 

  22. Raghavan, M. L., M. W. Webster, and D. A. Vorp. Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann. Biomed. Eng. 24(5):573–582, 1996.

    Article  PubMed  CAS  Google Scholar 

  23. Sacks, M. S., W. D. Merryman, and D. E. Schmidt. On the biomechanics of heart valve function. J. Biomech. 42(12):1804–1824, 2009.

    Article  PubMed  Google Scholar 

  24. Sahasakul, Y., W. D. Edwards, J. M. Naessens, and A. J. Tajik. Age-related changes in aortic and mitral valve thickness: implications for two-dimensional echocardiography based on an autopsy study of 200 normal human hearts. Am. J. Cardiol. 62(7):424–430, 1988.

    Article  PubMed  CAS  Google Scholar 

  25. Shadden, S. C., M. Astorino, and J. F. Gerbeau. Computational analysis of an aortic valve jet with Lagrangian coherent structures. Chaos 20(1):017512, 2010.

    Article  PubMed  Google Scholar 

  26. Soncini, M., E. Votta, S. Zinicchino, V. Burrone, A. Mangini, M. Lemma, C. Antona, and A. Redaelli. Aortic root performance after valve sparing procedure: a comparative finite element analysis. Med. Eng. Phys. 31(2):234–243, 2009.

    Article  PubMed  Google Scholar 

  27. Stradins, P., R. Lacis, I. Ozolanta, B. Purina, V. Ose, L. Feldmane, and V. Kasyanov. Comparison of biomechanical and structural properties between human aortic and pulmonary valve. Eur. J. Cardiothorac. Surg. 26(3):634–639, 2004.

    Article  PubMed  Google Scholar 

  28. Thubrikar, M. J., P. Agali, and F. Robicsek. Wall stress as a possible mechanism for the development of transverse intimal tears in aortic dissections. J. Med. Eng. Technol. 23(4):127–134, 1999.

    Article  PubMed  CAS  Google Scholar 

  29. Vismara, R., C. Antona, A. Mangini, M. Cervo, M. Contino, E. Bosisio, A. Redaelli, and G. B. Fiore. In vitro study of aortic valves treated with neo-chordae grafts: hydrodynamics and tensile force measurements. Ann. Biomed. Eng. 39(3):1024–1031, 2011.

    Article  PubMed  CAS  Google Scholar 

  30. Votta, E., F. Maisano, S. F. Bolling, O. Alfieri, F. M. Montevecchi, and A. Redaelli. The Geoform disease-specific annuloplasty system: a finite element study. Ann. Thorac. Surg. 84(1):92–101, 2007.

    Article  PubMed  Google Scholar 

  31. Weinberg, E. J., and M. R. Kaazempur Mofrad. A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J. Biomech. 41:3482–3487, 2008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the “Fondazione per la Ricerca in Cardiochirurgia ONLUS”, Milan, Italy, and was supported by Regione Lombardia and CILEA Consortium through the 2010 grant of the LISA Initiative (Laboratory for Interdisciplinary Advanced Simulation) (http://lisa.cilea.it).

Conflict of Interest

The authors declare that no financial and personal relationships apply with other people or organisations that could inappropriately influence this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Vismara.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Votta, E., Paroni, L., Conti, C.A. et al. Aortic Valve Repair via Neo-Chordae Technique: Mechanistic Insight Through Numerical Modelling. Ann Biomed Eng 40, 1039–1051 (2012). https://doi.org/10.1007/s10439-011-0497-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0497-9

Keywords

Navigation