Skip to main content
Log in

Applicator for RF Thermokeratoplasty: Feasibility Study Using Theoretical Modeling and Ex Vivo Experiments

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Radiofrequency (RF) thermokeratoplasty uses RF currents to alter the curvature of the cornea by means of thermal lesions. An RF applicator which combined a microkeratome suction ring and a circular electrode was designed with the aim of creating circular thermal lesions in a predictable, uniform and safe way. An experimental study was conducted on ex vivo porcine eyes. A theoretical model was also designed. The experimental results showed a lesion depth of 34.2 ± 11.0% of corneal thickness at a constant voltage of 50 V up to roll-off (1000 Ω of impedance). With a voltage of 30 V for 30 s the mean depth was 36.8 ± 8.1%. The progress of electrical impedance throughout heating and lesion dimensions were used to compare the experimental and theoretical results. Both the impedance evolution and lesion dimensions obtained from the theoretical model showed good agreement with the experimental findings. The findings suggest that the new applicator could be a suitable option for creating uniform circular thermal lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Abraham, J. P., and E. M. Sparrow. A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. Int. J. Heat Mass Transf. 50:2537–2544, 2007.

    Article  Google Scholar 

  2. Alió, J. L., M. I. Ramzy, A. Galal, and P. J. Claramonte. Conductive keratoplasty for the correction of residual hyperopia after LASIK. J. Refract. Surg. 21:698–704, 2005.

    PubMed  Google Scholar 

  3. Arata, M. A., H. L. Nisenbaum, T. W. Clark, and M. C. Soulen. Percutaneous radiofrequency ablation of liver tumors with the LeVeen probe: Is roll-off predictive of response? J. Vasc. Interv. Radiol. 12:455–458, 2001.

    Article  PubMed  CAS  Google Scholar 

  4. Berjano, E. J. Theoretical modeling for radiofrequency ablation: state of-the-art and challenges for the future. Biomed. Eng. Online 5:24, 2006.

    Article  PubMed  Google Scholar 

  5. Berjano, E. J., J. L. Alió, and J. Saiz. Modeling for radio-frequency conductive keratoplasty: implications for the maximum temperature reached in the cornea. Physiol. Meas. 26:157–172, 2005.

    Article  PubMed  Google Scholar 

  6. Berjano, E. J., F. Burdío, A. C. Navarro, J. M. Burdío, A. Güemes, O. Aldana, P. Ros, R. Sousa, R. Lozano, E. Tejero, and M. A. de Gregorio. Improved perfusion system for bipolar radiofrequency ablation of liver. Physiol. Meas. 27:N55–N66, 2006.

    Article  PubMed  Google Scholar 

  7. Berjano, E. J., E. Navarro, V. Ribera, J. Gorris, and J. L. Alió. Radiofrequency heating of the cornea: an engineering review of electrodes and applicators. Open Biomed. Eng. J. 1:71–76, 2007.

    Article  PubMed  Google Scholar 

  8. Berjano, E. J., J. Saiz, J. L. Alió, and J. M. Ferrero. Ring electrode for radio-frequency heating of the cornea: modelling and in vitro experiments. Med. Biol. Eng. Comput. 41:630–639, 2003.

    Article  PubMed  CAS  Google Scholar 

  9. Berjano, E. J., J. Saiz, and J. M. Ferrero. Radio-frequency heating of the cornea: theoretical model and in vitro experiments. IEEE Trans. Biomed. Eng. 49:196–205, 2002.

    Article  PubMed  Google Scholar 

  10. Bischof, J. C., and X. He. Thermal stability of proteins. Ann. N. Y. Acad. Sci. 1066:12–33, 2005.

    Article  PubMed  CAS  Google Scholar 

  11. Doss, J. D., and J. I. Albillar. A technique for the selective heating of corneal stroma. Contact Intraocular Lens Med. 6:13–17, 1980.

    Google Scholar 

  12. Ehrlich, J. S., and E. E. Manche. Regression of effect over long-term follow-up of conductive keratoplasty to correct mild to moderate hyperopia. J. Cataract Refract. Surg. 35:1591–1596, 2009.

    Article  PubMed  Google Scholar 

  13. Gruenberg, P., W. Manning, D. Miller, and W. Olson. Increase in rabbit corneal curvature by heated ring application. Ann. Ophthalmol. 13:67–70, 1981.

    PubMed  CAS  Google Scholar 

  14. Haines, D. E., D. D. Watson, and A. F. Verow. Electrode radius predicts lesion radius during radiofrequency energy heating. Validation of a proposed thermodynamic model. Circ. Res. 67:124–129, 1990.

    PubMed  CAS  Google Scholar 

  15. Henriques, F. C. Studies of thermal injury. Arch. Pathol. 5:489–502, 1947.

    Google Scholar 

  16. Jo, B., and A. Aksan. Prediction of the extent of thermal damage in the cornea during conductive keratoplasty. J. Therm. Biol. 35:167–174, 2010.

    Article  Google Scholar 

  17. Kymionis, G. D., P. Titze, M. M. Markomanolakis, I. M. Aslanides, and I. G. Pallikaris. Corneal perforation after conductive keratoplasty with previous refractive surgery. J. Cataract Refract. Surg. 29:2452–2454, 2003.

    Article  PubMed  Google Scholar 

  18. Miller, D., and W. J. Manning. Alterations in curvature of bovine cornea using heated rings. Invest. Ophthalmol. 297, 1978.

  19. Miller, M. W., and M. C. Ziskin. Biological consequences of hyperthermia. Ultrasound Med. Biol. 15:702–722, 1989.

    Google Scholar 

  20. Moshirfar, M., M. Feilmeier, and R. Kumar. Anterior chamber inflammation induced by conductive keratoplasty. J. Cataract Refract. Surg. 31:1676–1677, 2005.

    Article  PubMed  Google Scholar 

  21. Ou, J. I., and E. E. Manche. Corneal perforation after conductive keratoplasty in a patient with previously undiagnosed Sjögren syndrome. Arch. Ophthalmol. 125:1131–1132, 2007.

    Article  PubMed  Google Scholar 

  22. Pallikaris, I. G., T. L. Naoumidi, and N. I. Astyrakakis. Long-term results of conductive keratoplasty for low to moderate hyperopia. J. Cataract Refract. Surg. 31:1520–1529, 2005.

    Article  PubMed  Google Scholar 

  23. Pearce, J., D. Panescu, and S. S. Thomsen. Simulation of diopter changes in radio frequency conductive keratoplasty in the cornea. WIT Trans. Biomed. Health 8:469–477, 2005.

    Google Scholar 

  24. Stahl, J. E. Conductive keratoplasty for presbyopia: 3-year results. J. Refract. Surg. 23:905–910, 2007.

    PubMed  Google Scholar 

  25. Thomsen, S., J. A. Pearce, and W. F. Cheong. Changes in birefringence as markers of thermal damage in tissues. IEEE Trans. Biomed. Eng. 36:1174–1179, 1989.

    Article  PubMed  CAS  Google Scholar 

  26. Trembly, B. S., N. Hashizume, K. L. Moodie, K. L. Cohen, N. K. Tripoli, and P. J. Hoopes. Microwave thermal keratoplasty for myopia: keratoscopic evaluation in porcine eyes. J. Refract. Surg. 17:682–688, 2001.

    PubMed  CAS  Google Scholar 

  27. Xu, W., P. Ye, K. Yao, J. Ma, and H. Xu. Conductive keratoplasty for the treatment of astigmatism induced by corneal trauma or incision. J. Refract. Surg. 26:33–42, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work received financial support from the Spanish “Plan Nacional de I+D+I del Ministerio de Ciencia e Innovación” Grant No. TEC2008-01369/TEC and FEDER Project MTM2010-14909. The translation of this paper was partially funded by the Universitat Politècnica de València, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Berjano.

Additional information

Associate Editor Gerald Saidel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trujillo, M., Ribera, V., Quesada, R. et al. Applicator for RF Thermokeratoplasty: Feasibility Study Using Theoretical Modeling and Ex Vivo Experiments. Ann Biomed Eng 40, 1182–1191 (2012). https://doi.org/10.1007/s10439-011-0492-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0492-1

Keywords

Navigation