Annals of Biomedical Engineering

, Volume 40, Issue 6, pp 1289–1300 | Cite as

Microtechnology for Mimicking In Vivo Tissue Environment



Microtechnology provides a new approach for reproducing the in vivo environment in vitro. Mimicking the microenvironment of the natural tissues allows cultured cells to behave in a more authentic manner, and gives researchers more realistic platforms to study biological systems. In this review article, we discuss the physiochemical aspects of in vivo cellular microenvironment, and relevant technologies that can be used to mimic those aspects. Secondly we identify the core methods used in microtechnology for biomedical applications. Finally we examine the recent application areas of microtechnology, with a focus on reproducing the functions of specific organs, or whole-body response such as homeostasis or metabolism-dependent toxicity of drugs. These new technologies enable researchers to ask and answer questions in a manner that has not been possible with conventional, macroscale technologies.


Microtechnology In vitro systems Multi-organ interactions Pharmacokinetics Microfluidics 


  1. 1.
    Allen, J. W., S. R. Khetani, and S. N. Bhatia. In vitro zonation and toxicity in a hepatocyte bioreactor. Toxicol. Sci. 84(1):110–119, 2005.PubMedCrossRefGoogle Scholar
  2. 2.
    Artursson, P., K. Palm, and K. Luthman. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 46(1–3):27–43, 2001.PubMedCrossRefGoogle Scholar
  3. 3.
    Baudoin, R., A. Corlu, L. Griscom, C. Legallais, and E. Leclerc. Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity. Toxicol. In Vitro 21(4):535–544, 2007.PubMedCrossRefGoogle Scholar
  4. 4.
    Bennett, M. R., and J. Hasty. Microfluidic devices for measuring gene network dynamics in single cells. Nat. Rev. Genet. 10(9):628–638, 2009.PubMedCrossRefGoogle Scholar
  5. 5.
    Bergman, R. N. Orchestration of glucose homeostasis: from a small acorn to the California oak. Diabetes 56(6):1489–1501, 2007.PubMedCrossRefGoogle Scholar
  6. 6.
    Bhatia, S. N., M. L. Yarmush, and M. Toner. Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J. Biomed. Mater. Res. 34(2):189–199, 1997.PubMedCrossRefGoogle Scholar
  7. 7.
    Brandon, E. F., C. D. Raap, I. Meijerman, J. H. Beijnen, and J. H. Schellens. An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol. Appl. Pharmacol. 189(3):233–246, 2003.PubMedCrossRefGoogle Scholar
  8. 8.
    Burgess, K. A., H. H. Hu, W. R. Wagner, and W. J. Federspiel. Towards microfabricated biohybrid artificial lung modules for chronic respiratory support. Biomed. Microdevices 11(1):117–127, 2009.PubMedCrossRefGoogle Scholar
  9. 9.
    Camp, J. P., T. Stokol, and M. L. Shuler. Fabrication of a multiple-diameter branched network of microvascular channels with semi-circular cross-sections using xenon difluoride etching. Biomed. Microdevices 10(2):179–186, 2008.PubMedCrossRefGoogle Scholar
  10. 10.
    Cukierman, E., R. Pankov, D. R. Stevens, and K. M. Yamada. Taking cell–matrix adhesions to the third dimension. Science 294(5547):1708–1712, 2001.PubMedCrossRefGoogle Scholar
  11. 11.
    De Smet, K., T. Bruning, M. Blaszkewicz, H. M. Bolt, A. Vercruysse, and V. Rogiers. Biotransformation of trichloroethylene in collagen gel sandwich cultures of rat hepatocytes. Arch. Toxicol. 74(10):587–592, 2000.PubMedCrossRefGoogle Scholar
  12. 12.
    Dittrich, P. S., and A. Manz. Lab-on-a-chip: microfluidics in drug discovery. Nat. Rev. Drug Discov. 5(3):210–218, 2006.PubMedCrossRefGoogle Scholar
  13. 13.
    Douville, N. J., P. Zamankhan, Y. C. Tung, R. Li, B. L. Vaughan, C. F. Tai, J. White, P. J. Christensen, J. B. Grotberg, and S. Takayama. Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model. Lab Chip 11(4):609–619, 2011.PubMedCrossRefGoogle Scholar
  14. 14.
    Fidkowski, C., M. R. Kaazempur-Mofrad, J. Borenstein, J. P. Vacanti, R. Langer, and Y. Wang. Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng. 11(1–2):302–309, 2005.PubMedCrossRefGoogle Scholar
  15. 15.
    Geckil, H., F. Xu, X. Zhang, S. Moon, and U. Demirci. Engineering hydrogels as extracellular matrix mimics. Nanomedicine (Lond.) 5(3):469–484, 2010.CrossRefGoogle Scholar
  16. 16.
    Golden, A. P., and J. Tien. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7(6):720–725, 2007.PubMedCrossRefGoogle Scholar
  17. 17.
    Guillaume-Gentil, O., M. Gabi, M. Zenobi-Wong, and J. Voros. Electrochemically switchable platform for the micro-patterning and release of heterotypic cell sheets. Biomed. Microdevices 13(1):221–230, 2011.PubMedCrossRefGoogle Scholar
  18. 18.
    Guillotin, B., and F. Guillemot. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 29(4):183–190, 2011.PubMedCrossRefGoogle Scholar
  19. 19.
    Guzzardi, M. A., C. Domenici, and A. Ahluwalia. Metabolic control through hepatocyte and adipose tissue cross-talk in a multicompartmental modular bioreactor. Tissue Eng. A 17(11–12):1635–1642, 2011.CrossRefGoogle Scholar
  20. 20.
    Honarmandi, P., H. Lee, M. J. Lang, and R. D. Kamm. A microfluidic system with optical laser tweezers to study mechanotransduction and focal adhesion recruitment. Lab Chip 11(4):684–694, 2011.PubMedCrossRefGoogle Scholar
  21. 21.
    Hosmane, S., A. Fournier, R. Wright, L. Rajbhandari, R. Siddique, I. H. Yang, K. T. Ramesh, A. Venkatesan, and N. Thakor. Valve-based microfluidic compression platform: single axon injury and regrowth. Lab Chip 11(22):3888–3895, 2011.PubMedCrossRefGoogle Scholar
  22. 22.
    Huh, D., B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, and D. E. Ingber. Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668, 2010.PubMedCrossRefGoogle Scholar
  23. 23.
    Humes, H. D., W. H. Fissell, and K. Tiranathanagul. The future of hemodialysis membranes. Kidney Int. 69(7):1115–1119, 2006.PubMedCrossRefGoogle Scholar
  24. 24.
    Ismagilov, R. F., and M. M. Maharbiz. Can we build synthetic, multicellular systems by controlling developmental signaling in space and time? Curr. Opin. Chem. Biol. 11(6):604–611, 2007.PubMedCrossRefGoogle Scholar
  25. 25.
    Janmey, P. A., and C. A. McCulloch. Cell mechanics: integrating cell responses to mechanical stimuli. Annu. Rev. Biomed. Eng. 9:1–34, 2007.PubMedCrossRefGoogle Scholar
  26. 26.
    Jeong, G. S., S. Chung, C. B. Kim, and S. H. Lee. Applications of micromixing technology. Analyst 135(3):460–473, 2010.PubMedCrossRefGoogle Scholar
  27. 27.
    Kang, J. H., Y. C. Kim, and J. K. Park. Analysis of pressure-driven air bubble elimination in a microfluidic device. Lab Chip 8(1):176–178, 2008.PubMedCrossRefGoogle Scholar
  28. 28.
    Keenan, T. M., and A. Folch. Biomolecular gradients in cell culture systems. Lab Chip 8(1):34–57, 2008.PubMedCrossRefGoogle Scholar
  29. 29.
    Khademhosseini, A., and R. Langer. Microengineered hydrogels for tissue engineering. Biomaterials 28(34):5087–5092, 2007.PubMedCrossRefGoogle Scholar
  30. 30.
    Khaleque, T., S. Abu-Salih, J. R. Saunders, and W. Moussa. Experimental methods of actuation, characterization and prototyping of hydrogels for bioMEMS/NEMS applications. J. Nanosci. Nanotechnol. 11(3):2470–2479, 2011.PubMedCrossRefGoogle Scholar
  31. 31.
    Khetani, S. R., and S. N. Bhatia. Microscale culture of human liver cells for drug development. Nat. Biotechnol. 26(1):120–126, 2008.PubMedCrossRefGoogle Scholar
  32. 32.
    Kim, S., H. J. Kim, and N. L. Jeon. Biological applications of microfluidic gradient devices. Integr. Biol. (Camb.) 2(11-12):584–603, 2010.CrossRefGoogle Scholar
  33. 33.
    Kim, L., M. D. Vahey, H. Y. Lee, and J. Voldman. Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab Chip 6(3):394–406, 2006.PubMedCrossRefGoogle Scholar
  34. 34.
    Kim, S. J., F. Wang, M. A. Burns, and K. Kurabayashi. Temperature-programmed natural convection for micromixing and biochemical reaction in a single microfluidic chamber. Anal. Chem. 81(11):4510–4516, 2009.PubMedCrossRefGoogle Scholar
  35. 35.
    Lee, K., C. Kim, B. Ahn, R. Panchapakesan, A. R. Full, L. Nordee, J. Y. Kang, and K. W. Oh. Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators. Lab Chip 9(5):709–717, 2009.PubMedCrossRefGoogle Scholar
  36. 36.
    Lee, M. Y., R. A. Kumar, S. M. Sukumaran, M. G. Hogg, D. S. Clark, and J. S. Dordick. Three-dimensional cellular microarray for high-throughput toxicology assays. Proc. Natl. Acad. Sci. USA 105(1):59–63, 2008.PubMedCrossRefGoogle Scholar
  37. 37.
    Lee, S. H., D. van Noort, J. Y. Lee, B. T. Zhang, and T. H. Park. Effective mixing in a microfluidic chip using magnetic particles. Lab Chip. 9(3):479–482, 2009.PubMedCrossRefGoogle Scholar
  38. 38.
    Lehmann, A. D., N. Daum, M. Bur, C. M. Lehr, P. Gehr, and B. M. Rothen-Rutishauser. An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier. Eur. J. Pharm. Biopharm. 77(3):398–406, 2011.PubMedCrossRefGoogle Scholar
  39. 39.
    Leonard, E. F., S. Cortell, and N. G. Vitale. Membraneless dialysis—is it possible? Contrib. Nephrol. 149:343–353, 2005.PubMedCrossRefGoogle Scholar
  40. 40.
    Li Jeon, N., H. Baskaran, S. K. Dertinger, G. M. Whitesides, L. Van de Water, and M. Toner. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20(8):826–830, 2002.PubMedGoogle Scholar
  41. 41.
    Lu, H., L. Y. Koo, W. M. Wang, D. A. Lauffenburger, L. G. Griffith, and K. F. Jensen. Microfluidic shear devices for quantitative analysis of cell adhesion. Anal. Chem. 76(18):5257–5264, 2004.PubMedCrossRefGoogle Scholar
  42. 42.
    Lucchetta, E. M., J. H. Lee, L. A. Fu, N. H. Patel, and R. F. Ismagilov. Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434(7037):1134–1138, 2005.PubMedCrossRefGoogle Scholar
  43. 43.
    Ma, B., G. Zhang, J. Qin, and B. Lin. Characterization of drug metabolites and cytotoxicity assay simultaneously using an integrated microfluidic device. Lab Chip 9(2):232–238, 2009.PubMedCrossRefGoogle Scholar
  44. 44.
    Mahler, G. J., M. B. Esch, R. P. Glahn, and M. L. Shuler. Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnol. Bioeng. 104(1):193–205, 2009.PubMedCrossRefGoogle Scholar
  45. 45.
    Mahler, G. J., M. L. Shuler, and R. P. Glahn. Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability. J. Nutr. Biochem. 20(7):494–502, 2009.PubMedCrossRefGoogle Scholar
  46. 46.
    McGuigan, A. P., and M. V. Sefton. Vascularized organoid engineered by modular assembly enables blood perfusion. Proc. Natl. Acad. Sci. USA 103(31):11461–11466, 2006.PubMedCrossRefGoogle Scholar
  47. 47.
    Meyvantsson, I., J. W. Warrick, S. Hayes, A. Skoien, and D. J. Beebe. Automated cell culture in high density tubeless microfluidic device arrays. Lab Chip 8(5):717–724, 2008.PubMedCrossRefGoogle Scholar
  48. 48.
    Milosevic, N., H. Schawalder, and P. Maier. Kupffer cell-mediated differential down-regulation of cytochrome P450 metabolism in rat hepatocytes. Eur. J. Pharmacol. 368(1):75–87, 1999.PubMedCrossRefGoogle Scholar
  49. 49.
    Moon, J. J., and J. L. West. Vascularization of engineered tissues: approaches to promote angio-genesis in biomaterials. Curr. Top Med. Chem. 8(4):300–310, 2008.PubMedCrossRefGoogle Scholar
  50. 50.
    Morier, P., C. Vollet, P. E. Michel, F. Reymond, and J. S. Rossier. Gravity-induced convective flow in microfluidic systems: electrochemical characterization and application to enzyme-linked immunosorbent assay tests. Electrophoresis 25(21–22):3761–3768, 2004.PubMedCrossRefGoogle Scholar
  51. 51.
    Mrksich, M., L. E. Dike, J. Tien, D. E. Ingber, and G. M. Whitesides. Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. Exp. Cell Res. 235(2):305–313, 1997.PubMedCrossRefGoogle Scholar
  52. 52.
    Musi, N., and L. J. Goodyear. Insulin resistance and improvements in signal transduction. Endocrine 29(1):73–80, 2006.PubMedCrossRefGoogle Scholar
  53. 53.
    Nahmias, Y., F. Berthiaume, and M. L. Yarmush. Integration of technologies for hepatic tissue engineering. Adv. Biochem. Eng. Biotechnol. 103:309–329, 2007.PubMedGoogle Scholar
  54. 54.
    Orr, D. E., and K. J. Burg. Design of a modular bioreactor to incorporate both perfusion flow and hydrostatic compression for tissue engineering applications. Ann. Biomed. Eng. 36(7):1228–1241, 2008.PubMedCrossRefGoogle Scholar
  55. 55.
    Park, T. H., and M. L. Shuler. Integration of cell culture and microfabrication technology. Biotechnol. Prog. 19(2):243–253, 2003.PubMedCrossRefGoogle Scholar
  56. 56.
    Pelkonen, O., and M. Turpeinen. In vitro–in vivo extrapolation of hepatic clearance: biological tools, scaling factors, model assumptions and correct concentrations. Xenobiotica 37(10–11):1066–1089, 2007.PubMedCrossRefGoogle Scholar
  57. 57.
    Ramello, C., P. Paullier, A. Ould-Dris, M. Monge, C. Legallais, and E. Leclerc. Investigation into modification of mass transfer kinetics by acrolein in a renal biochip. Toxicol. In Vitro 25(5):1123–1131, 2011.PubMedCrossRefGoogle Scholar
  58. 58.
    Saadi, W., S. W. Rhee, F. Lin, B. Vahidi, B. G. Chung, and N. L. Jeon. Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed. Microdevices 9(5):627–635, 2007.PubMedCrossRefGoogle Scholar
  59. 59.
    Schiele, N. R., D. T. Corr, Y. Huang, N. A. Raof, Y. Xie, and D. B. Chrisey. Laser-based direct-write techniques for cell printing. Biofabrication 2(3):032001, 2010.PubMedCrossRefGoogle Scholar
  60. 60.
    Shah, R. K., and A. L. London, Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data. Advances in Heat Transfer Supplement. New York: Academic Press, xiv, 477 pp., 1978.Google Scholar
  61. 61.
    Sharma, R. I., and J. G. Snedeker. Biochemical and biomechanical gradients for directed bone marrow stromal cell differentiation toward tendon and bone. Biomaterials 31(30):7695–7704, 2010.PubMedCrossRefGoogle Scholar
  62. 62.
    Sin, A., K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler. The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol. Prog. 20(1):338–345, 2004.PubMedCrossRefGoogle Scholar
  63. 63.
    Sivaraman, A., J. K. Leach, S. Townsend, T. Iida, B. J. Hogan, D. B. Stolz, R. Fry, L. D. Samson, S. R. Tannenbaum, and L. G. Griffith. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr. Drug Metab. 6(6):569–591, 2005.PubMedCrossRefGoogle Scholar
  64. 64.
    Skelley, A. M., and J. Voldman. An active bubble trap and debubbler for microfluidic systems. Lab Chip 8(10):1733–1737, 2008.PubMedCrossRefGoogle Scholar
  65. 65.
    Stoltz, J. F., S. Muller, A. Kadi, V. Decot, P. Menu, and D. Bensoussan. Introduction to endothelial cell biology. Clin. Hemorheol. Microcirc. 37(1–2):5–8, 2007.PubMedGoogle Scholar
  66. 66.
    Stroock, A. D., and C. Fischbach. Microfluidic culture models of tumor angiogenesis. Tissue Eng. A 16(7):2143–2146, 2010.CrossRefGoogle Scholar
  67. 67.
    Sundararaghavan, H. G., G. A. Monteiro, B. L. Firestein, and D. I. Shreiber. Neurite growth in 3D collagen gels with gradients of mechanical properties. Biotechnol. Bioeng. 102(2):632–643, 2009.PubMedCrossRefGoogle Scholar
  68. 68.
    Sung, J. H., M. B. Esch, and M. L. Shuler. Integration of in silico and in vitro platforms for pharmacokinetic-pharmacodynamic modeling. Expert Opin. Drug Metab. Toxicol. 6(9):1063–1081, 2010.PubMedCrossRefGoogle Scholar
  69. 69.
    Sung, J. H., C. Kam, and M. L. Shuler. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 10(4):446–455, 2010.PubMedCrossRefGoogle Scholar
  70. 70.
    Sung, J. H., and M. L. Shuler. A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 9(10):1385–1394, 2009.PubMedCrossRefGoogle Scholar
  71. 71.
    Sung, J. H., and M. L. Shuler. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap. Biomed. Microdevices 11(4):731–738, 2009.PubMedCrossRefGoogle Scholar
  72. 72.
    Sung, J. H., J. Yu, D. Luo, M. L. Shuler, and J. C. March. Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 11(3):389–392, 2011.PubMedCrossRefGoogle Scholar
  73. 73.
    Toepke, M. W., and D. J. Beebe. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6(12):1484–1486, 2006.PubMedCrossRefGoogle Scholar
  74. 74.
    Torisawa, Y. S., B. Mosadegh, G. D. Luker, M. Morell, K. S. O’Shea, and S. Takayama. Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids. Integr. Biol. (Camb.) 1(11–12):649–654, 2009.CrossRefGoogle Scholar
  75. 75.
    Tsang, V. L., and S. N. Bhatia. Fabrication of three-dimensional tissues. Adv. Biochem. Eng. Biotechnol. 103:189–205, 2007.PubMedGoogle Scholar
  76. 76.
    Tschumperlin, D. J., and S. S. Margulies. Equibiaxial deformation-induced injury of alveolar epithelial cells in vitro. Am. J. Physiol. 275(6 Pt 1):L1173–L1183, 1998.PubMedGoogle Scholar
  77. 77.
    Tse, J. R., and A. J. Engler. Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS One 6(1):e15978, 2011.PubMedCrossRefGoogle Scholar
  78. 78.
    van Midwoud, P. M., M. T. Merema, E. Verpoorte, and G. M. Groothuis. A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices. Lab Chip 10(20):2778–2786, 2010.PubMedCrossRefGoogle Scholar
  79. 79.
    Vickerman, V., J. Blundo, S. Chung, and R. Kamm. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8(9):1468–1477, 2008.PubMedCrossRefGoogle Scholar
  80. 80.
    Viravaidya, K., A. Sin, and M. L. Shuler. Development of a microscale cell culture analog to probe naphthalene toxicity. Biotechnol. Prog. 20(1):316–323, 2004.PubMedCrossRefGoogle Scholar
  81. 81.
    Vozzi, F., J. M. Heinrich, A. Bader, and A. D. Ahluwalia. Connected culture of murine hepatocytes and HUVEC in a multicompartmental bioreactor. Tissue Eng. A 15(6):1291–1299, 2009.CrossRefGoogle Scholar
  82. 82.
    Wang, F., V. M. Weaver, O. W. Petersen, C. A. Larabell, S. Dedhar, P. Briand, R. Lupu, and M. J. Bissell. Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc. Natl. Acad. Sci. USA 95(25):14821–14826, 1998.PubMedCrossRefGoogle Scholar
  83. 83.
    Whitesides, G. M. The origins and the future of microfluidics. Nature 442(7101):368–373, 2006.PubMedCrossRefGoogle Scholar
  84. 84.
    Wnek, G. E., and G. L. Bowlin. Encyclopedia of Biomaterials and Biomedical Engineering. New York: Marcel Dekker, 2004.Google Scholar
  85. 85.
    Wright, D., B. Rajalingam, S. Selvarasah, M. R. Dokmeci, and A. Khademhosseini. Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils. Lab Chip 7(10):1272–1279, 2007.PubMedCrossRefGoogle Scholar
  86. 86.
    Xiao, Y., and G. A. Truskey. Effect of receptor-ligand affinity on the strength of endothelial cell adhesion. Biophys. J. 71(5):2869–2884, 1996.PubMedCrossRefGoogle Scholar
  87. 87.
    Young, E. W., and D. J. Beebe. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem. Soc. Rev. 39(3):1036–1048, 2010.PubMedCrossRefGoogle Scholar
  88. 88.
    Young, E. W., and C. A. Simmons. Macro- and microscale fluid flow systems for endothelial cell biology. Lab Chip 10(2):143–160, 2010.PubMedCrossRefGoogle Scholar
  89. 89.
    Zhang, W., S. Lin, C. Wang, J. Hu, C. Li, Z. Zhuang, Y. Zhou, R. A. Mathies, and C. J. Yang. PMMA/PDMS valves and pumps for disposable microfluidics. Lab Chip 9(21):3088–3094, 2009.PubMedCrossRefGoogle Scholar
  90. 90.
    Zheng, Y., W. Dai, and H. Wu. A screw-actuated pneumatic valve for portable, disposable microfluidics. Lab Chip 9(3):469–472, 2009.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  1. 1.Chemical EngineeringHongik UniversitySeoulKorea
  2. 2.Biomedical EngineeringCornell UniversityIthacaUSA

Personalised recommendations