Skip to main content
Log in

Collagen Fiber Re-Alignment in a Neonatal Developmental Mouse Supraspinatus Tendon Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Collagen fiber re-alignment is one postulated mechanism of tendon structural response to load. While collagen fiber distribution has been shown to vary by tendon location in the supraspinatus tendon (SST), changes in local re-alignment behavior have not been examined throughout postnatal development. Postnatal tendons, with immature collagen fibrils, may respond to load in a much different manner than collagen fibers with mature fiber–fiber and fiber–matrix connections. Local collagen fiber re-alignment is quantified throughout tensile mechanical testing in a developmental mouse SST model and corresponding mechanical properties measured. Collagen fiber re-alignment occurred during preconditioning for 28 day old tendons, at the toe-region for 10 day tendons and at the linear-region for 4 day tendon midsubstance. Mechanical properties increased with developmental age. Linear modulus was lower at the insertion site compared to the midsubstance location at all time points. Local differences in collagen fiber distributions were found at 10 and 28 days for all mechanical testing points (except the 10 day transition point). This study found that collagen fiber re-alignment depends on developmental age and suggests that collagen fibrillogenesis may influence the tendon’s ability to structurally respond to load. Additionally, results indicate that the insertion site and tendon midsubstance locations develop differently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ansorge, H. L., S. Adams, D. E. Birk, and L. J. Soslowsky. Mechanical, compositional, and structural properties of the post-natal mouse Achilles tendon. Ann. Biomed. Eng. 39:1904–1913, 2011.

    Article  PubMed  Google Scholar 

  2. Ansorge, H. L., X. Meng, G. Zhang, G. Veit, M. Sun, J. F. Klement, D. P. Beason, L. J. Soslowsky, M. Koch, and D. E. Birk. Type xiv collagen regulates fibrillogenesis: premature collagen fibril growth and tissue dysfunction in null mice. J. Biol. Chem. 284:8427–8438, 2009.

    Article  PubMed  CAS  Google Scholar 

  3. Benjamin, M., T. Kumai, S. Milz, B. M. Boszczyk, A. A. Boszczyk, and J. R. Ralphs. The skeletal attachment of tendons—tendon “Entheses”. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 133:931–945, 2002.

    Article  PubMed  CAS  Google Scholar 

  4. Benjamin, M., R. L. Newell, E. J. Evans, J. R. Ralphs, and D. J. Pemberton. The structure of the insertions of the tendons of biceps brachii, triceps and brachialis in elderly dissecting room cadavers. J. Anat. 180(Pt 2):327–332, 1992.

    PubMed  Google Scholar 

  5. Birk, D. E., M. V. Nurminskaya, and E. I. Zycband. Collagen fibrillogenesis in situ: fibril segments undergo post-depositional modifications resulting in linear and lateral growth during matrix development. Dev. Dyn. 202:229–243, 1995.

    Article  PubMed  CAS  Google Scholar 

  6. Birk, D. E., E. I. Zycband, S. Woodruff, D. A. Winkelmann, and R. L. Trelstad. Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures. Dev. Dyn. 208:291–298, 1997.

    Article  PubMed  CAS  Google Scholar 

  7. Derwin, K. A., L. J. Soslowsky, W. D. Green, and S. H. Elder. A new optical system for the determination of deformations and strains: calibration characteristics and experimental results. J. Biomech. 27:1277–1285, 1994.

    Article  PubMed  CAS  Google Scholar 

  8. Diamant, J., A. Keller, E. Baer, M. Litt, and R. G. Arridge. Collagen; ultrastructure and its relation to mechanical properties as a function of ageing. Proc. R. Soc. Lond. B Biol. Sci. 180:293–315, 1972.

    Article  PubMed  CAS  Google Scholar 

  9. Favata, M. Scarless healing in the fetus: implications and strategies for postnatal tendon repair. Ph.D. thesis, University of Pennsylvania, 2006.

  10. Festing, M. F. Design and statistical methods in studies using animal models of development. ILAR J. 47:5–14, 2006.

    PubMed  CAS  Google Scholar 

  11. Franchi, M., A. Trire, M. Quaranta, E. Orsini, and V. Ottani. Collagen structure of tendon relates to function. ScientificWorldJournal 7:404–420, 2007.

    Article  PubMed  CAS  Google Scholar 

  12. Galatz, L., S. Rothermich, K. VanderPloeg, B. Petersen, L. Sandell, and S. Thomopoulos. Development of the supraspinatus tendon-to-bone insertion: localized expression of extracellular matrix and growth factor genes. J. Orthop. Res. 25:1621–1628, 2007.

    Article  PubMed  Google Scholar 

  13. Lake, S. P., K. S. Miller, D. M. Elliott, and L. J. Soslowsky. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading. J. Orthop. Res. 27:1596–1602, 2009.

    Article  PubMed  Google Scholar 

  14. Lake, S. P., K. S. Miller, D. M. Elliott, and L. J. Soslowsky. Tensile properties and fiber alignment of human supraspinatus tendon in the transverse direction demonstrate inhomogeneity, nonlinearity, and regional isotropy. J. Biomech. 43:727–732, 2010.

    Article  PubMed  Google Scholar 

  15. Miller, K. S., L. Edelstein, and L. J. Soslowsky. Effect of preconditioning on collagen fiber recruitment: inhomogeneous properties of the rat supraspinatus tendon. In: Proceeding of the ASME 2010 Summer Bioengineering Conference, 2010.

  16. Miller, K. S. S. J. T., N. A. Trasolini, and L. J. Soslowsky. The upper band of the subscapularis tendon in the rat has inferior mechanical properties. In: Transactions of the Orthopaedic Research Society, 2011.

  17. Moore, M. J., and A. De Beaux. A quantitative ultrastructural study of rat tendon from birth to maturity. J. Anat. 153:163–169, 1987.

    PubMed  CAS  Google Scholar 

  18. Nakagawa, Y., T. Majima, and K. Nagashima. Effect of ageing on ultrastructure of slow and fast skeletal muscle tendon in rabbit Achilles tendons. Acta Physiol. Scand. 152:307–313, 1994.

    Article  PubMed  CAS  Google Scholar 

  19. Oryan, A., and A. H. Shoushtari. Histology and ultrastructure of the developing superficial digital flexor tendon in rabbits. Anat. Histol. Embryol. 37:134–140, 2008.

    Article  PubMed  CAS  Google Scholar 

  20. Parry, D. A., A. S. Craig, and G. R. Barnes. Tendon and ligament from the horse: an ultrastructural study of collagen fibrils and elastic fibres as a function of age. Proc. R. Soc. Lond. B Biol. Sci. 203:293–303, 1978.

    Article  PubMed  CAS  Google Scholar 

  21. Peltz, C. D., J. J. Sarver, L. M. Dourte, C. C. Wurgler-Hauri, G. R. Williams, and L. J. Soslowsky. Exercise following a short immobilization period is detrimental to tendon properties and joint mechanics in a rat rotator cuff injury model. J. Orthop. Res. 28:841–845, 2010.

    PubMed  Google Scholar 

  22. Provenzano, P. P., and R. Vanderby, Jr. Collagen fibril morphology and organization: implications for force transmission in ligament and tendon. Matrix Biol. 25:71–84, 2006.

    Article  PubMed  CAS  Google Scholar 

  23. Quinn, K. P., and B. A. Winkelstein. Preconditioning is correlated with altered collagen fiber alignment in ligament. J. Biomech. Eng. 133:064506, 2011.

    Article  PubMed  Google Scholar 

  24. Ralphs, J. R., R. N. Tyers, and M. Benjamin. Development of functionally distinct fibrocartilages at two sites in the quadriceps tendon of the rat: the suprapatella and the attachment to the patella. Anat. Embryol. (Berl.) 185:181–187, 1992.

    Article  CAS  Google Scholar 

  25. Rufai, A., M. Benjamin, and J. R. Ralphs. Development and ageing of phenotypically distinct fibrocartilages associated with the rat Achilles tendon. Anat. Embryol. (Berl.) 186:611–618, 1992.

    Article  CAS  Google Scholar 

  26. Schweitzer, R., E. Zelzer, and T. Volk. Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development 137:2807–2817, 2010.

    Article  PubMed  CAS  Google Scholar 

  27. Silver, F. H., J. W. Freeman, and G. P. Seehra. Collagen self-assembly and the development of tendon mechanical properties. J. Biomech. 36:1529–1553, 2003.

    Article  PubMed  Google Scholar 

  28. Sverdlik, A., and Y. Lanir. Time-dependent mechanical behavior of sheep digital tendons, including the effects of preconditioning. J. Biomech. Eng. 124:78–84, 2002.

    Article  PubMed  CAS  Google Scholar 

  29. Thomopoulos, S., H. M. Kim, S. Y. Rothermich, C. Biederstadt, R. Das, and L. M. Galatz. Decreased muscle loading delays maturation of the tendon enthesis during postnatal development. J. Orthop. Res. 25:1154–1163, 2007.

    Article  PubMed  Google Scholar 

  30. Thomopoulos, S., G. R. Williams, J. A. Gimbel, M. Favata, and L. J. Soslowsky. Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J. Orthop. Res. 21:413–419, 2003.

    Article  PubMed  Google Scholar 

  31. Zhang, G., B. B. Young, Y. Ezura, M. Favata, L. J. Soslowsky, S. Chakravarti, and D. E. Birk. Development of tendon structure and function: regulation of collagen fibrillogenesis. J. Musculoskelet. Neuronal Interact. 5:5–21, 2005.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH/NIAMS. We also thank David P. Beason, Jennica J. Tucker, and Elizabeth Feeney for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis J. Soslowsky.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, K.S., Connizzo, B.K. & Soslowsky, L.J. Collagen Fiber Re-Alignment in a Neonatal Developmental Mouse Supraspinatus Tendon Model. Ann Biomed Eng 40, 1102–1110 (2012). https://doi.org/10.1007/s10439-011-0490-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0490-3

Keywords

Navigation