Skip to main content
Log in

Upregulation of SDF-1 is Associated with Atherosclerosis Lesions Induced by LDL Concentration Polarization

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Previous numerical simulations on low-density lipoprotein (LDL) concentration polarization in the arterial system indicated that LDL concentration polarization might play an important role in the genesis and development of atherosclerosis. To date, no in vivo experiments have examined this question directly, and the molecular mechanisms are unknown. In this study, ten rabbits were treated with gel–silica loop to develop a defined local stenosis in the straight segment of the left carotid artery. Both numerical simulation and experiment measurements showed that the concentration of LDL was about 35% higher at the blood/arterial wall interface than in the lumen on the distal side of the stenosis. Atherosclerotic lesions with abundant lipid deposits were observed and stromal derived factor-1 (SDF-1) was detected at the distal end of the stenosis, while the straight segment was plaque-free. In vitro studies demonstrated that LDL-induced SDF-1 expression in endothelial cells and increased monocyte adhesion to endothelial cells in a dose-dependent manner. The adhesion was suppressed when endothelial cells were pretreated with SDF-1 antibody. These results suggested LDL concentration polarization contributed to the localization of atherosclerosis and to the expression of SDF-1. In turn, SDF-1 facilitated plaque formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abi-Younes, S., A. Sauty, F. Mach, G. K. Sukhova, P. Libby, and A. D. Luster. The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerotic plaques. Circ. Res. 86:131–138, 2000.

    PubMed  CAS  Google Scholar 

  2. Chatzizisis, Y. S., A. U. Coskun, M. Jonas, E. R. Edelman, C. L. Feldman, and P. H. Stone. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular and vascular behavior. J. Am. Coll. Cardiol. 49:2379–2393, 2007.

    Article  PubMed  CAS  Google Scholar 

  3. de la Sierra, A., and M. Larrousse. Endothelial dysfunction is associated with increased levels of biomarkers in essential hypertension. J. Hum. Hypertens. 24:373–379, 2010.

    Article  PubMed  Google Scholar 

  4. Deng, X., Y. Marois, T. How, Y. Merhi, M. King, R. Guidoin, and T. Karino. Luminal surface concentration of lipoprotein (LDL) and its effect on the wall uptake of cholesterol by canine carotid arteries. J. Vasc. Surg. 21:135–145, 1995.

    Article  PubMed  CAS  Google Scholar 

  5. Ding, Z., Y. Fan, and X. Deng. Effect of LDL concentration polarization on the uptake of LDL by human endothelial cells and smooth muscle cells co-cultured. Acta Biochim. Biophys. Sin. (Shanghai) 4:146–153, 2009.

    Article  Google Scholar 

  6. Ding, Z., Y. Fan, X. Deng, A. Sun, and H. Kang. 3,3′-Dioctadecylindocarbocyanine-low-density lipoprotein uptake and flow patterns in the rabbit aorta-iliac bifurcation under three perfusion flow conditions. Exp. Biol. Med. (Maywood) 235:1062–1071, 2010.

    Article  CAS  Google Scholar 

  7. Fatouraee, N., X. Deng, A. De Champlain, and R. Guidoin. Concentration polarization of low density lipoproteins (LDL) in the arterial system. Ann. N. Y. Acad. Sci. 858:137–146, 1998.

    Article  PubMed  CAS  Google Scholar 

  8. Geisel, J., V. Jödden, R. Obeid, J. P. Knapp, M. Bodis, and W. Herrmann. Stimulatory effect of homocysteine on interleukin-8 expression in human endothelial cells. Clin. Chem. Lab. Med. 41:1045–1048, 2003.

    Article  PubMed  CAS  Google Scholar 

  9. Hsu, S. W., J. C. Chaloupka, J. A. Feekes, M. D. Cassell, and Y. F. Cheng. In vitro studies of the neuroform microstent using transparent human intracranial arteries. AJNR Am. J. Neuroradiol. 27:1135–1139, 2006.

    PubMed  Google Scholar 

  10. Jiang, T., G. Wang, J. Qiu, L. Luo, and G. Zhang. Preparation and biocompatibility of polyvinyl alcohol—small intestinal submucosa hydrogel membranes. J. Med. Biol. Eng. 29(2):102–107, 2009.

    Google Scholar 

  11. Kim, J. A., J. A. Berlianer, and J. L. Nadler. AngiotensinII increase monocyte binding to endothelial cells. J. Biochem. Biophys. Res. Commun. 226:862–868, 1996.

    Article  CAS  Google Scholar 

  12. Li, M. X., J. J. Beech-Brandt, L. R. John, P. R. Hoskins, and W. J. Easson. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses. J. Biomech. 40:3715–3724, 2007.

    Article  PubMed  CAS  Google Scholar 

  13. Liu, K. K. Y., and K. Dorovini-Zis. Regulation of CXCL12 and CXCR4 expression by human brain endothelial cells and their role in CD4+ and CD8+ T cell adhesion and transendothelial migration. J. Neuroimmunol. 215:49–64, 2009.

    Article  PubMed  CAS  Google Scholar 

  14. Liu, X., Y. B. Fan, X. Y. Deng, and F. Zhan. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. J. Biomech. 44:1123–1131, 2011.

    Article  PubMed  Google Scholar 

  15. Liu, B., and D. Tang. Influence of non-Newtonian properties of blood on the wall shear stress in human atherosclerotic right coronary arteries. Mol. Cell. Biomech. 8:73–90, 2011.

    PubMed  Google Scholar 

  16. Ma, X., Y. W. Hu, Z. C. Mo, X. X. Li, X. H. Liu, J. Xiao, W. D. Yin, D. F. Liao, and C. K. Tang. NO-1886 up-regulates Niemann-Pick C1 protein (NPC1) expression through liver X receptor alpha signaling pathway in THP-1 macrophage-derived foam cells. Cardiovasc. Drugs Ther. 23:199–206, 2009.

    Article  PubMed  Google Scholar 

  17. Malik, M., Y. Y. Chen, M. F. Kienzle, B. E. Tomkowicz, R. G. Collman, and A. Ptasznik. Monocyte migration and LFA-1-mediated attachment to brain microvascular endothelia is regulated by SDF-1 alpha through Lyn kinase. J. Immunol. 181:4632–4637, 2008.

    PubMed  CAS  Google Scholar 

  18. Melchionna, R., D. Porcelli, A. Mangoni, D. Carlini, G. Liuzzo, G. Spinetti, A. Antonini, M. C. Capogrossi, and M. Napolitano. Laminar shear stress inhibits CXCR4 expression on endothelial cells: functional consequences for atherogenesis. FASEB J. 19:629–631, 2005.

    PubMed  CAS  Google Scholar 

  19. Schwenke, D. C., and T. E. Carew. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis 9:908–918, 1989.

    Article  PubMed  CAS  Google Scholar 

  20. Stary, H. C. Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults. Arteriosclerosis 9:119–132, 1989.

    Google Scholar 

  21. Stephan, Z. F., and E. C. Yurachek. Rapid fluorometric assay of LDL receptor activity by DiI-labeled LDL. J. Lipid Res. 34:325–330, 1993.

    PubMed  CAS  Google Scholar 

  22. Lowry, O., N. Rosebrough, A. Farr, and R. Randall. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275, 1951.

    Google Scholar 

  23. Wada, S., and T. Karino. Theoretical prediction of low-density lipoproteins concentration at the luminal surface of an artery with a multiple bend. Ann. Biomed. Eng. 30:778–791, 2002.

    Article  PubMed  Google Scholar 

  24. Wang, G. X., X. Y. Deng, and R. Guidoin. Concentration polarization of macromolecules in canine carotid arteries and its implication for the localization of atherogenesis. J. Biomech. 36:45–51, 2003.

    Article  PubMed  CAS  Google Scholar 

  25. Xiaoyan, D. E. N. G., and W. A. N. G. Guixue. Concentration polarization of atherogenic lipids in the arterial system. Sci. China (Ser. C) 46:153–164, 2003.

    Article  Google Scholar 

  26. Zernecke, A., E. Shagdarsuren, and C. Weber. Chemokines in atherosclerosis: an update. Arterioscler. Thromb. Vasc. Biol. 28:1897–1908, 2008.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang, Z., X. Deng, Y. Fan, and D. Li. Ex vitro experimental study on concentration polarization of macromolecules (LDL) at an arterial stenosis. Sci. China Ser. C Life Sci. 50:486–491, 2007.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (30970721, 30800449), the National Basic Research Program of China (Grant No. 2012CB945101). The assistance of Dr. X.-Y. Deng was greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guixue Wang.

Additional information

Associate Editor Joan Greve oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, D., Wang, G., Tang, C. et al. Upregulation of SDF-1 is Associated with Atherosclerosis Lesions Induced by LDL Concentration Polarization. Ann Biomed Eng 40, 1018–1027 (2012). https://doi.org/10.1007/s10439-011-0486-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0486-z

Keywords

Navigation