Skip to main content
Log in

Fibroblast Morphology on Dynamic Softening of Hydrogels

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Despite cellular environments having dynamic characteristics, many laboratories utilized static polyacrylamide hydrogels to study the ECM–cell relationship. To attain a more in vivo like environment, we have developed a dynamic, DNA-crosslinked hydrogel (DNA gel). Through the controlled delivery of DNA, we can temporally decrease or increase gel stiffness while expanding or contracting the gel, respectively. These dual mechanical changes make DNA gels a cell–ECM model for studying dynamic mechano-regulated processes, such as wound healing. Here, we characterized DNA gels on a mechanical and cellular level. In contrast to our previous publication, in which we examined the increasing stiffness effects on fibroblast morphology, we examined the effects of decreased matrix stiffness on fibroblast morphology. In addition, we quantified the bulk and/or local stress and strain properties of dynamic gels. Gels generated about 0.5 Pa stress and about 6–11% strain upon softening to generate larger and more circular fibroblasts. These results complemented our previous study, where dynamic gels contracted upon stiffening to generate smaller and longer fibroblasts. In conclusion, we developed a biomaterial that increases and decreases in stiffness while contracting and expanding, respectively. We found that the dynamic deformation directionality of the matrix determined the fibroblast morphology and possibly influences function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aarabi, S., K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang, S. A. Loh, J. W. Holmes, M. T. Longaker, H. Yee, and G. C. Gurtner. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J. 21:3250, 2007.

    Article  PubMed  CAS  Google Scholar 

  2. Balaban, N. Q., U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3:466–472, 2001.

    Article  PubMed  CAS  Google Scholar 

  3. Banerjee, I., K. Yekkala, T. K. Borg, and T. A. Baudino. Dynamic interactions between myocytes, fibroblasts, and extracellular matrix. Ann. N. Y. Acad. Sci. 1080:76–84, 2006.

    Article  PubMed  CAS  Google Scholar 

  4. Brown, X. Q., K. Ookawa, and J. Y. Wong. Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response. Biomaterials 26:3123–3129, 2005.

    Article  PubMed  CAS  Google Scholar 

  5. Chippada, U. Non-Intrusive Characterization of Properties of Hydrogels. Rutgers University Electronic Theses and Dissertations, 2010.

  6. Chippada, U., B. Yurke, and N. A. Langrana. Simultaneous determination of young’s modulus, shear modulus, and Poisson’s ratio of soft hydrogels. J. Mater. Res. 25:545–555, 2010.

    Article  CAS  Google Scholar 

  7. Cukierman, E., R. Pankov, D. R. Stevens, and K. M. Yamada. Taking cell–matrix adhesions to the third dimension. Science. 294:1708–1712, 2001.

    Article  PubMed  CAS  Google Scholar 

  8. Dembo, M., and Y. L. Wang. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76:2307–2316, 1999.

    Article  PubMed  CAS  Google Scholar 

  9. Eastwood, M., D. A. McGrouther, and R. A. Brown. Fibroblast responses to mechanical forces. Proc. Inst. Mech. Eng. H: J. Eng. Med. 212:85–92, 1998.

    Article  CAS  Google Scholar 

  10. Engler, A., L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86:617–628, 2004.

    Article  PubMed  CAS  Google Scholar 

  11. Flanagan, L. A., Y. E. Ju, B. Marg, M. Osterfield, and P. A. Janmey. Neurite branching on deformable substrates. Neuroreport. 13:2411, 2002.

    Article  PubMed  Google Scholar 

  12. Frank, C., D. McDonald, J. Wilson, D. Eyre, and N. Shrive. Rabbit medial collateral ligament scar weakness is associated with decreased collagen pyridinoline crosslink density. J. Orthop. Res. 13:157–165, 1995.

    Article  PubMed  CAS  Google Scholar 

  13. Friedland, J. C., M. H. Lee, and D. Boettiger. Mechanically activated integrin switch controls alpha(5)beta(1) function. Science. 323:642–644, 2009.

    Article  PubMed  CAS  Google Scholar 

  14. Gabbiani, G. The myofibroblast in wound healing and fibrocontractive diseases. J. Pathol. 200:500–503, 2003.

    Article  PubMed  CAS  Google Scholar 

  15. Galbraith, C. G., and M. P. Sheetz. A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl Acad. Sci. USA 94:9114–9118, 1997.

    Article  PubMed  CAS  Google Scholar 

  16. Galbraith, C. G., and M. P. Sheetz. Forces on adhesive contacts affect cell function. Curr. Opin. Cell Biol. 10:566–571, 1998.

    Article  PubMed  CAS  Google Scholar 

  17. Galbraith, C. G., R. Skalak, and S. Chien. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskelet. 40:317–330, 1998.

    Article  CAS  Google Scholar 

  18. Geiger, B., and A. Bershadsky. Exploring the neighborhood: adhesion-coupled cell mechanosensors. Cell 110:139–142, 2002.

    Article  PubMed  CAS  Google Scholar 

  19. Genes, N. G., J. A. Rowley, D. J. Mooney, and L. J. Bonassar. Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces. Arch. Biochem. Biophys. 422:161–167, 2004.

    Article  PubMed  CAS  Google Scholar 

  20. Haston, W. S., J. M. Shields, and P. C. Wilkinson. The orientation of fibroblasts and neutrophils on elastic substrata. Exp. Cell Res. 146:117–126, 1983.

    Article  PubMed  CAS  Google Scholar 

  21. Huang, S., and D. E. Ingber. The structural and mechanical complexity of cell-growth control. Nat. Cell Biol. 1:E131–E138, 1999.

    Article  PubMed  CAS  Google Scholar 

  22. Hynes, R. O. The dynamic dialogue between cells and matrices: implications of fibronectin’s elasticity. Proc. Natl Acad. Sci. USA 96:2588–2590, 1999.

    Article  PubMed  CAS  Google Scholar 

  23. Ingber, D. E. Mechanosensation through integrins: cells act locally but think globally. Proc. Natl Acad. Sci. USA 100:1472–1474, 2003.

    Article  PubMed  CAS  Google Scholar 

  24. Inoh, H., N. Ishiguro, S. Sawazaki, H. Amma, M. Miyazu, H. Iwata, M. Sokabe, and K. Naruse. Uni-axial cyclic stretch induces the activation of transcription factor nuclear factor kappab in human fibroblast cells. FASEB J. 16:405–407, 2002.

    PubMed  CAS  Google Scholar 

  25. Jean, C., P. Gravelle, J. J. Fournie, and G. Laurent. Influence of stress on extracellular matrix and integrin biology. Oncogene. 30:2697–2706, 2011.

    Article  PubMed  CAS  Google Scholar 

  26. Jiang, X., P. C. Georges, B. Li, Y. Du, M. K. Kutzing, M. L. Previtera, N. A. Langrana, and B. L. Firestein. Cell growth in response to mechanical stiffness is affected by neuron-astroglia interactions. Open Neurosci. J. 1:7–14, 2007.

    CAS  Google Scholar 

  27. Jiang, F. X., B. Yurke, B. L. Firestein, and N. A. Langrana. Neurite outgrowth on a DNA crosslinked hydrogel with tunable stiffnesses. Ann. Biomed. Eng. 36:1565–1579, 2008.

    Article  PubMed  Google Scholar 

  28. Jiang, F. X., B. Yurke, R. S. Schloss, B. L. Firestein, and N. A. Langrana. Effect of dynamic stiffness of the substrates on neurite outgrowth by using a DNA-crosslinked hydrogel. Tissue Eng. A 16:1873–1889, 2010.

    Article  CAS  Google Scholar 

  29. Jiang, F. X., B. Yurke, R. S. Schloss, B. L. Firestein, and N. A. Langrana. The relationship between fibroblast growth and the dynamic stiffnesses of a DNA crosslinked hydrogel. Biomaterials 31:1199–1212, 2010.

    Article  PubMed  CAS  Google Scholar 

  30. Kano, Y., K. Katoh, and K. Fujiwara. Lateral zone of cell–cell adhesion as the major fluid shear stress-related signal transduction site. Circ. Res. 86:425–433, 2000.

    PubMed  CAS  Google Scholar 

  31. Kolodney, M. S., and R. B. Wysolmerski. Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. J. Cell Biol. 117:73–82, 1992.

    Article  PubMed  CAS  Google Scholar 

  32. Kuo, S. C., and M. P. Sheetz. Forces of single kinesin molecules measured with optical tweezers. Science 260:232–234, 1993.

    Article  PubMed  CAS  Google Scholar 

  33. Lauffenburger, D. A., and A. F. Horwitz. Cell migration: a physically integrated molecular process. Cell 84:359–369, 1996.

    Article  PubMed  CAS  Google Scholar 

  34. Letourneau, P. C., M. L. Condic, and D. M. Snow. Interactions of developing neurons with the extracellular matrix. J. Neurosci. 14:915, 1994.

    PubMed  CAS  Google Scholar 

  35. Li, L., A. E. Davidovich, J. M. Schloss, U. Chippada, R. R. Schloss, N. A. Langrana, and M. L. Yarmush. Neural lineage differentiation of embryonic stem cells within alginate microbeads. Biomaterials 32:4489–4497, 2011.

    Article  PubMed  CAS  Google Scholar 

  36. Lin, D. C., B. Yurke, and N. A. Langrana. Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J. Biomech. Eng. 126:104, 2004.

    Article  PubMed  Google Scholar 

  37. Lin, D. C., B. Yurke, and N. A. Langrana. Inducing reversible stiffness changes in DNA-crosslinked gels. J. Mater. Res. 20:1456–1464, 2005.

    Article  CAS  Google Scholar 

  38. Lin, D. C., B. Yurke, and N. A. Langrana. Use of rigid spherical inclusions in young’s moduli determination: application to DNA-crosslinked gels. J. Biomech. Eng. 127:571, 2005.

    Article  PubMed  Google Scholar 

  39. Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–152, 2000.

    Article  PubMed  CAS  Google Scholar 

  40. MacKenna, D., S. R. Summerour, and F. J. Villarreal. Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc. Res. 46:257–263, 2000.

    Article  PubMed  CAS  Google Scholar 

  41. Neidlinger-Wilke, C., E. S. Grood, J.-C. Wang, R. A. Brand, and L. Claes. Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates. J. Orthop. Res. 19:286–293, 2001.

    Article  PubMed  CAS  Google Scholar 

  42. Pelham, R. J., Jr., and Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94:13661, 1997.

    Article  PubMed  CAS  Google Scholar 

  43. Polio, S. R., K. E. Rothenberg, D. Stamenović, and M. L. Smith. A micropatterning and image processing approach to simplify measurement of cellular traction force. Acta Biomater. 8:82–88, 2012.

    Article  PubMed  CAS  Google Scholar 

  44. Previtera, M. L., C. G. Langhammer, and B. L. Firestein. Effects of substrate stiffness and cell density on primary hippocampal cultures. J. Biosci. Bioeng. 110:459–470, 2010.

    Article  PubMed  CAS  Google Scholar 

  45. Previtera, M. L., C. G. Langhammer, N. A. Langrana, and B. L. Firestein. Dendrite arborization by substrate stiffness is mediated by glutamate receptor. Ann. Biomed. Eng. 38:3733–3743, 2010.

    Article  PubMed  Google Scholar 

  46. Raghow, R. The role of extracellular matrix in postinflammatory wound healing and fibrosis. FASEB J. 8:823, 1994.

    PubMed  CAS  Google Scholar 

  47. Sheetz, M. P., D. P. Felsenfeld, and C. G. Galbraith. Cell migration: regulation of force on extracellular-matrix-integrin complexes. Trends Cell Biol. 8:51–54, 1998.

    Article  PubMed  CAS  Google Scholar 

  48. Singer, A. J., and R. A. F. Clark. Cutaneous wound healing. N. Engl. J. Med. 341:738, 1999.

    Article  PubMed  CAS  Google Scholar 

  49. Skutek, M., M. van Griensven, J. Zeichen, N. Brauer, and U. Bosch. Cyclic mechanical stretching modulates secretion pattern of growth factors in human tendon fibroblasts. Eur. J. Appl. Physiol. 86:48–52, 2001.

    Article  PubMed  CAS  Google Scholar 

  50. Solon, J., I. Levental, K. Sengupta, P. C. Georges, and P. A. Janmey. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys. J. 93:4453–4461, 2007.

    Article  PubMed  CAS  Google Scholar 

  51. Sundararaghavan, H. G., G. A. Monteiro, B. L. Firestein, and D. I. Shreiber. Neurite growth in 3D collagen gels with gradients of mechanical properties. Biotechnol. Bioeng. 102:632–643, 2009.

    Article  PubMed  CAS  Google Scholar 

  52. Thibeault, S. L., S. D. Gray, D. M. Bless, R. W. Chan, and C. N. Ford. Histologic and rheologic characterization of vocal fold scarring. J. Voice 16:96–104, 2002.

    Article  PubMed  Google Scholar 

  53. Tomasek, J. J., G. Gabbiani, B. Hinz, C. Chaponnier, and R. A. Brown. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3:349–363, 2002.

    Article  PubMed  CAS  Google Scholar 

  54. Wakatsuki, T., M. S. Kolodney, G. I. Zahalak, and E. L. Elson. Cell mechanics studied by a reconstituted model tissue. Biophys. J. 79:2353–2368, 2000.

    Article  PubMed  CAS  Google Scholar 

  55. Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell-surface and through the cytoskeleton. Science. 260:1124–1127, 1993.

    Article  PubMed  CAS  Google Scholar 

  56. Wang, H. B., M. Dembo, S. K. Hanks, and Y. Wang. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc. Natl Acad. Sci. USA 98:11295, 2001.

    Article  PubMed  CAS  Google Scholar 

  57. Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. A. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 60:24–34, 2005.

    Article  Google Scholar 

  58. Zaman, M. H., L. M. Trapani, A. L. Sieminski, D. MacKellar, H. Gong, R. D. Kamm, A. Wells, D. A. Lauffenburger, and P. Matsudaira. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell–matrix adhesion and proteolysis. Proc. Natl Acad. Sci. USA 103:10889, 2006.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NJSCR #08-3080-SCR-E-0. K.T. supported by Rutgers RiSE summer program, Rutgers REU-CB (NSF EEC-0851831), and The College of St. Scholastica Ronald E. McNair Postbaccalaureate Achievement Program. We would like to thank Christopher Liu for analysis of cell density and editing of this manuscript. We would like to thank Dr. David I. Shreiber for the GFP fibroblasts. Lastly, we would like to thank Namrata Kulkarni and Vikas Shah for editing this manuscript.

Conflict of interest

Authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noshir A. Langrana.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10439_2011_483_MOESM1_ESM.tif

Supplemental Figure 1: Aspect ratio and perimeter. Mean + SEM values of aspect ratio (left) and perimeter (right) for fibroblasts grown on various DNA gels (TIFF 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Previtera, M.L., Trout, K.L., Verma, D. et al. Fibroblast Morphology on Dynamic Softening of Hydrogels. Ann Biomed Eng 40, 1061–1072 (2012). https://doi.org/10.1007/s10439-011-0483-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0483-2

Keywords

Navigation