Skip to main content
Log in

Load-Adaptive Scaffold Architecturing: A Bioinspired Approach to the Design of Porous Additively Manufactured Scaffolds with Optimized Mechanical Properties

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Computer-Aided Tissue Engineering (CATE) is based on a set of additive manufacturing techniques for the fabrication of patient-specific scaffolds, with geometries obtained from medical imaging. One of the main issues regarding the application of CATE concerns the definition of the internal architecture of the fabricated scaffolds, which, in turn, influences their porosity and mechanical strength. The present study envisages an innovative strategy for the fabrication of highly optimized structures, based on the a priori finite element analysis (FEA) of the physiological load set at the implant site. The resulting scaffold micro-architecture does not follow a regular geometrical pattern; on the contrary, it is based on the results of a numerical study. The algorithm was applied to a solid free-form fabrication process, using poly(ε-caprolactone) as the starting material for the processing of additive manufactured structures. A simple and intuitive geometry was chosen as a proof-of-principle application, on which finite element simulations and mechanical testing were performed. Then, to demonstrate the capability in creating mechanically biomimetic structures, the proximal femur subjected to physiological loading conditions was considered and a construct fitting a femur head portion was designed and manufactured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abbah, S. A., C. X. Lam, D. W. Hutmacher, J. C. Goh, and H.-K. Wong. Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery. Biomaterials 30:5086–5093, 2009.

    Article  PubMed  CAS  Google Scholar 

  2. Adachi, T., Y. Osako, M. Tanaka, M. Hojo, and S. J. Hollister. Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27:3964–3972, 2006.

    Article  PubMed  CAS  Google Scholar 

  3. Almeida, H. A., and P. J. Bartolo. Virtual topological optimisation of scaffolds for rapid prototyping. Med. Eng. Phys. 32:775–782, 2010.

    Article  Google Scholar 

  4. Bartolo, P. J., C. K. Chua, H. A. Almeida, S. M. Chou, and A. S. C. Lim. Biomanufacturing for tissue engineering: present and future trends. Virtual Phys. Prototyp. 4:203–216, 2009.

    Article  Google Scholar 

  5. Cahill, S., S. Lohfeld, and P. E. McHugh. Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering. J. Mater. Sci. Mater. Med. 20:1255–1262, 2009.

    Article  PubMed  CAS  Google Scholar 

  6. Cheah, C.-M., C.-K. Chua, K.-F. Leong, C.-H. Cheong, and M.-W. Naing. Automatic algorithm for generating complex polyhedral scaffolds for tissue engineering. Tissue Eng. 10:595–610, 2004.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, Z., Z. Su, S. Ma, X. Wu, and Z. Luo. Biomimetic modeling and three-dimension reconstruction of the artificial bone. Comput. Methods Programs Biomed. 88:123–130, 2007.

    Article  PubMed  Google Scholar 

  8. Cheung, G., P. Zalzal, M. Bhandari, J. K. Spelt, and M. Papini. Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading. Med. Eng. Phys. 26:93–108, 2004.

    Article  PubMed  CAS  Google Scholar 

  9. Eshraghi, S., and S. Das. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater. 6:2467–2476, 2010.

    Article  PubMed  CAS  Google Scholar 

  10. Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. Cambridge University Press: Cambridge, 532 pp, 1999.

  11. Hobbie, R. K., and B. J. Roth. Intermediate Physics for Medicine and Biology. Springer: New York, 575 pp, 2007.

  12. Hollister, S. J. Porous scaffold design for tissue engineering. Nat. Mater. 4:518–524, 2005.

    Article  PubMed  CAS  Google Scholar 

  13. Hutmacher, D. W., T. Schantz, I. Zein, K. W. Ng, S. H. Teoh, and K. C. Tan. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res. 55:203–216, 2001.

    Article  PubMed  CAS  Google Scholar 

  14. Hutmacher, D. W., M. Sittinger, and M. V. Risbud. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 22:354–362, 2004.

    Article  PubMed  CAS  Google Scholar 

  15. Jones, J. R., and L. L. Hench. Regeneration of trabecular bone using porous ceramics. Curr. Opin. Solid State Mater. Sci. 7:301–307, 2003.

    Article  CAS  Google Scholar 

  16. Kalita, S. J., S. Bose, H. L. Hosick, and A. Bandyopadhyay. Development of controlled porosity polymer–ceramic composite scaffolds via fused deposition modeling. Mater. Sci. Eng. C. 23:611–620, 2003.

    Article  Google Scholar 

  17. Keaveny, T. M., X. E. Guo, E. F. Wachtel, T. A. McMahon, and W. C. Hayes. Trabecular bone exhibits fully linear elastic behavior and yields at low strains. J. Biomech. 27:1127–1136, 1994.

    Article  PubMed  CAS  Google Scholar 

  18. Koch, J. C. The laws of bone architecture. Am. J. Anat. 21:177–298, 1917.

    Article  Google Scholar 

  19. Lacroix, D., J. A. Planell, and P. J. Prendergast. Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering. Philos. Trans. A Math. Phys. Eng. Sci. 367:1993–2009, 2009.

    Article  Google Scholar 

  20. Landau, D. L., and E. M. Lifshitz. Theory of Elasticity. Oxford: Butterworth Heinemann, 1986; (187 pp).

    Google Scholar 

  21. Lee, C. H., J. L. Cook, A. Mendelson, E. K. Moioli, H. Yao, and J. J. Mao. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 376:440–448, 2010.

    Article  PubMed  CAS  Google Scholar 

  22. Lin, C. Y., N. Kikuchi, and S. J. Hollister. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J. Biomech. 37:623–636, 2004.

    Article  PubMed  Google Scholar 

  23. McIntosh, L., J. M. Cordell, and A. J. Wagoner Johnson. Impact of bone geometry on effective properties of bone scaffolds. Acta Biomater. 5:680–692, 2009.

    Article  PubMed  CAS  Google Scholar 

  24. Melchels, F. P. W., K. Bertoldi, R. Gabbrielli, A. H. Velders, J. Feijen, and D. W. Grijpma. Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 31:6909–6916, 2010.

    Article  PubMed  CAS  Google Scholar 

  25. Olivares, A. L., E. Marsal, J. A. Planell, and D. Lacroix. Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials 30:6142–6149, 2009.

    Article  PubMed  CAS  Google Scholar 

  26. Pálfi, P. Locally orthotropic femur model. J. Comput. Appl. Mech. 5:103–115, 2002.

    Google Scholar 

  27. Pandithevan, P., and G. Saravana Kumar. Reconstruction of subject-specific human femoral bone model with cortical porosity data using macro-CT. Virtual Phys. Prototyp. 4:115–129, 2009.

    Article  Google Scholar 

  28. Pandithevan, P., and G. Saravana Kumar. Finite element analysis of a personalized femoral scaffold with designed microarchitecture. Proc. IMechE H J. Eng. Med. 224:877–889, 2010.

    Article  CAS  Google Scholar 

  29. Papini, M., R. Zdero, E. H. Schemitsch, and P. Zalzal. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. J. Biomech. Eng. 129:12–19, 2007.

    Article  PubMed  CAS  Google Scholar 

  30. Peltola, S. M., F. P. W. Melchels, D. W. Grijpma, and M. Kellomaki. A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 40:268–280, 2008.

    Article  PubMed  CAS  Google Scholar 

  31. Rezwan, K., Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431, 2006.

    Article  PubMed  CAS  Google Scholar 

  32. Sandino, C., J. A. Planell, and D. Lacroix. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J. Biomech. 41:1005–1014, 2008.

    Article  PubMed  CAS  Google Scholar 

  33. Shao, X., J. C. Goh, D. W. Hutmacher, E. H. Lee, and G. Zigang. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng. 12:1539–1551, 2006.

    Article  PubMed  CAS  Google Scholar 

  34. Shipley, R. J., G. W. Jones, R. J. Dyson, B. G. Sengers, C. L. Bailey, C. J. Catt, C. P. Please, and J. Malda. Design criteria for a printed tissue engineering construct: a mathematical homogenization approach. J. Theor. Biol. 259:489–502, 2009.

    Article  PubMed  CAS  Google Scholar 

  35. Shor, L., S. Guceri, R. Chang, J. Gordon, Q. Kang, L. Hartsock, Y. An, and W. Sun. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication 1:015003, 2009.

    Article  PubMed  Google Scholar 

  36. Simpson, R. L., F. E. Wiria, A. A. Amis, C. K. Chua, K. F. Leong, U. N. Hansen, M. Chandrasekaran, and M. W. Lee. Development of a 95/5 poly(l-lactide-co-glycolide)/hydroxylapatite and beta-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J. Biomed. Mater. Res. B Appl. Biomater. 84:17–25, 2008.

    PubMed  Google Scholar 

  37. Sobral, J. M., S. G. Caridade, R. A. Sousa, J. F. Mano, and R. L. Reis. Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater. 7:1009–1018, 2011.

    Article  PubMed  CAS  Google Scholar 

  38. Starly, B., W. Lau, T. Bradbury, and W. Sun. Internal architecture design and freeform fabrication of tissue replacement structures. Computer-Aided Des. 38:115–124, 2006.

    Article  Google Scholar 

  39. Sun, W., B. Starly, A. Darling, and C. Gomez. Computer aided tissue engineering application to biomimetic modeling and design of tissue scaffold. Biotechnol. Appl. Biochem. 39:49–58, 2004.

    Article  PubMed  CAS  Google Scholar 

  40. Swieszkowski, W., B. H. Tuan, K. J. Kurzydlowski, and D. W. Hutmacher. Repair and regeneration of osteochondral defects in the articular joints. Biomol. Eng. 24:489–495, 2007.

    Article  PubMed  CAS  Google Scholar 

  41. Tellis, B. C., J. A. Szivek, C. L. Bliss, D. S. Margolis, R. K. Vaidyanathan, and P. Calvert. Trabecular scaffolds created using micro CT guided fused deposition modeling. Mater. Sci. Eng. C Mater. Biol. Appl. 28:171–178, 2009.

    Article  PubMed  Google Scholar 

  42. Viceconti, M. A comparative study on different methods of automatic mesh generation on human femurs. Med. Eng. Phys. 20:1–10, 1998.

    Article  PubMed  CAS  Google Scholar 

  43. Williams, J. M., A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. J. Hollister, and S. Das. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26:4817–4827, 2005.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was partially supported by University Campus Bio-Medico di Roma under the CIR Young Investigator Research Grant.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Rainer.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rainer, A., Giannitelli, S.M., Accoto, D. et al. Load-Adaptive Scaffold Architecturing: A Bioinspired Approach to the Design of Porous Additively Manufactured Scaffolds with Optimized Mechanical Properties. Ann Biomed Eng 40, 966–975 (2012). https://doi.org/10.1007/s10439-011-0465-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0465-4

Keywords

Navigation