Skip to main content
Log in

Understanding Glycomechanics Using Mathematical Modeling: A Review of Current Approaches to Simulate Cellular Glycosylation Reaction Networks

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Following the footsteps of genomics and proteomics, recent years have witnessed the growth of large-scale experimental methods in the field of glycomics. In parallel, there has also been growing interest in developing Systems Biology based methods to study the glycome. The combined goals of these endeavors is to identify glycosylation-dependent mechanisms regulating human physiology, check points that can control the progression of pathophysiology, and modifications to reaction pathways that can result in more uniform biopharmaceutical processes. In these efforts, mathematical models of N- and O-linked glycosylation have emerged as paradigms for the field. While these are relatively few in number, nevertheless, the existing models provide a basic framework that can be used to develop more sophisticated analysis strategies for glycosylation in the future. The current review surveys these computational models with focus on the underlying mathematics and assumptions, and with respect to their ability to generate experimentally testable hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Briles, E. B., E. Li, and S. Kornfeld. Isolation of wheat germ agglutinin-resistant clones of Chinese hamster ovary cells deficient in membrane sialic acid and galactose. J. Biol. Chem. 252:1107–1116, 1977.

    PubMed  CAS  Google Scholar 

  2. Castilho, A., P. Gattinger, J. Grass, J. Jez, et al. N-glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans. Glycobiology 21:813–823, 2011.

    Article  PubMed  CAS  Google Scholar 

  3. Chandrasekaran, E. V., J. Xue, J. Xia, R. D. Locke, et al. Reversible sialylation: synthesis of cytidine 5’-monophospho-N-acetylneuraminic acid from cytidine 5’-monophosphate with alpha2, 3-sialyl O-glycan-, glycolipid-, and macromolecule-based donors yields diverse sialylated products. Biochemistry 47:320–330, 2008.

    Article  PubMed  CAS  Google Scholar 

  4. Colley, K. J. Golgi localization of glycosyltransferases: more questions than answers. Glycobiology 7:1–13, 1997.

    Article  PubMed  CAS  Google Scholar 

  5. Czlapinski, J. L., and C. R. Bertozzi. Synthetic glycobiology: exploits in the Golgi compartment. Curr. Opin. Chem. Biol. 10:645–651, 2006.

    Article  PubMed  CAS  Google Scholar 

  6. Dimitroff, C. J., T. S. Kupper, and R. Sackstein. Prevention of leukocyte migration to inflamed skin with a novel fluorosugar modifier of cutaneous lymphocyte-associated antigen. J. Clin. Invest. 112:1008–1018, 2003.

    PubMed  CAS  Google Scholar 

  7. Frank, M., and S. Schloissnig. Bioinformatics and molecular modeling in glycobiology. Cell Mol. Life Sci. 67:2749–2772, 2010.

    Article  PubMed  CAS  Google Scholar 

  8. Fuster, M. M., and J. D. Esko. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer 5:526–542, 2005.

    Article  PubMed  CAS  Google Scholar 

  9. Gannon, J., J. J. Bergeron, and T. Nilsson. Golgi and related vesicle proteomics: simplify to identify. Cold Spring Harb. Perspect. Biol., 2011. doi:10.1101/cshperspect.a005421.

  10. Gerken, T. A., O. Jamison, C. L. Perrine, J. C. Collette, et al. Emerging paradigms for the initiation of mucin-type protein O-glycosylation by the polypeptide GalNAc transferase family of glycosyltransferases. J. Biol. Chem. 286:14493–14507, 2011.

    Article  PubMed  CAS  Google Scholar 

  11. Gerken, T. A., C. Tep, and J. Rarick. Role of peptide sequence and neighboring residue glycosylation on the substrate specificity of the uridine 5’-diphosphate-alpha-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyl transferases T1 and T2: kinetic modeling of the porcine and canine submaxillary gland mucin tandem repeats. Biochemistry 43:9888–9900, 2004.

    Article  PubMed  CAS  Google Scholar 

  12. Herget, S., R. Ranzinger, K. Maass, and C. W. Lieth. GlycoCT—a unifying sequence format for carbohydrates. Carbohydr. Res. 343:2162–2171, 2008.

    Article  PubMed  CAS  Google Scholar 

  13. Hossler, P., B. C. Mulukutla, and W. S. Hu. Systems analysis of N-glycan processing in mammalian cells. PLoS One 2:e713, 2007.

    Google Scholar 

  14. Hsu, K. L., and L. K. Mahal. Sweet tasting chips: microarray-based analysis of glycans. Curr. Opin. Chem. Biol. 13:427–432, 2009.

    Article  PubMed  CAS  Google Scholar 

  15. Huang, C. Y., and J. E. Ferrell, Jr. Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 93:10078–10083, 1996.

    Article  PubMed  CAS  Google Scholar 

  16. Hucka, M., A. Finney, H. M. Sauro, H. Bolouri, et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531, 2003.

    Article  PubMed  CAS  Google Scholar 

  17. Inoue, N., T. Watanabe, T. Kutsukake, H. Saitoh, et al. Asn-linked sugar chain structures of recombinant human thrombopoietin produced in Chinese hamster ovary cells. Glycoconj. J. 16:707–718, 1999.

    Article  PubMed  CAS  Google Scholar 

  18. Jefferis, R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat. Rev. Drug Discov. 8:226–234, 2009.

    Article  PubMed  CAS  Google Scholar 

  19. Kagawa, Y., S. Takasaki, J. Utsumi, K. Hosoi, et al. Comparative study of the asparagine-linked sugar chains of natural human interferon-beta 1 and recombinant human interferon-beta 1 produced by three different mammalian cells. J. Biol. Chem. 263:17508–17515, 1988.

    PubMed  CAS  Google Scholar 

  20. Kim, P. J., D. Y. Lee, and H. Jeong. Centralized modularity of N-linked glycosylation pathways in mammalian cells. PLoS One 4:e7317, 2009.

    Google Scholar 

  21. Ko, I. K., T. J. Kean, and J. E. Dennis. Targeting mesenchymal stem cells to activated endothelial cells. Biomaterials 30:3702–3710, 2009.

    Article  PubMed  CAS  Google Scholar 

  22. Kohn, K. W., M. I. Aladjem, S. Kim, J. N. Weinstein, et al. Depicting combinatorial complexity with the molecular interaction map notation. Mol. Syst. Biol. 2:51, 2006.

    Google Scholar 

  23. Koli, K. M., and C. L. Arteaga. Processing of the transforming growth factor beta type I and II receptors. Biosynthesis and ligand-induced regulation. J. Biol. Chem. 272:6423–6427, 1997.

    Article  PubMed  CAS  Google Scholar 

  24. Kornfeld, R., and S. Kornfeld. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54:631–664, 1985.

    Article  PubMed  CAS  Google Scholar 

  25. Krambeck, F. J., and M. J. Betenbaugh. A mathematical model of N-linked glycosylation. Biotechnol. Bioeng. 92:711–728, 2005.

    Article  PubMed  CAS  Google Scholar 

  26. Lau, J. T., J. K. Welply, P. Shenbagamurthi, F. Naider, et al. Substrate recognition by oligosaccharyl transferase. Inhibition of co-translational glycosylation by acceptor peptides. J. Biol. Chem. 258:15255–15260, 1983.

    PubMed  CAS  Google Scholar 

  27. Lau, K. S., E. A. Partridge, A. Grigorian, C. I. Silvescu, et al. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129:123–134, 2007.

    Article  PubMed  CAS  Google Scholar 

  28. Le Novere, N., B. Bornstein, A. Broicher, M. Courtot, et al. BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucl. Acids Res. 34:D689–D691, 2006.

    Article  PubMed  CAS  Google Scholar 

  29. Liu, G., D. D. Marathe, K. L. Matta, and S. Neelamegham. Systems-level modeling of cellular glycosylation reaction networks: O-linked glycan formation on natural selectin ligands. Bioinformatics 24:2740–2747, 2008.

    Article  PubMed  CAS  Google Scholar 

  30. Losev, E., C. A. Reinke, J. Jellen, D. E. Strongin, et al. Golgi maturation visualized in living yeast. Nature 441:1002–1006, 2006.

    Article  PubMed  CAS  Google Scholar 

  31. Malhotra, V., and S. Mayor. Cell biology: the Golgi grows up. Nature 441:939–940, 2006.

    Article  PubMed  CAS  Google Scholar 

  32. Marathe, D. D., A. Buffone, Jr., E. V. Chandrasekaran, J. Xue, et al. Fluorinated per-acetylated GalNAc metabolically alters glycan structures on leukocyte PSGL-1 and reduces cell binding to selectins. Blood 115:1303–1312, 2010.

    Article  PubMed  CAS  Google Scholar 

  33. Marathe, D. D., E. V. Chandrasekaran, J. T. Lau, K. L. Matta, et al. Systems-level studies of glycosyltransferase gene expression and enzyme activity that are associated with the selectin binding function of human leukocytes. FASEB J. 22:4154–4167, 2008.

    Article  PubMed  CAS  Google Scholar 

  34. McDonald, A. G., K. F. Tipton, C. J. Stroop, and G. P. Davey. GlycoForm and Glycologue: two software applications for the rapid construction and display of N-glycans from mammalian sources. BMC Res. Notes. 3:173, 2010.

    Google Scholar 

  35. Monica, T. J., D. C. Andersen, and C. F. Goochee. A mathematical model of sialylation of N-linked oligosaccharides in the trans-Golgi network. Glycobiology 7:515–521, 1997.

    Article  PubMed  CAS  Google Scholar 

  36. Murrell, M. P., K. J. Yarema, and A. Levchenko. The systems biology of glycosylation. Chembiochem 5:1334–1347, 2004.

    Article  PubMed  CAS  Google Scholar 

  37. Neelamegham, S., and G. Liu. Systems glycobiology: biochemical reaction networks regulating glycan structure and function. Glycobiology. 2011. doi:10.1093/glycob/cwr036.

  38. Nilsson, T., M. Pypaert, M. H. Hoe, P. Slusarewicz, et al. Overlapping distribution of two glycosyltransferases in the Golgi apparatus of HeLa cells. J. Cell Biol. 120:5–13, 1993.

    Article  PubMed  CAS  Google Scholar 

  39. Okada, T., H. Ihara, R. Ito, N. Taniguchi, et al. Bidirectional N-acetylglucosamine transfer mediated by beta-1, 4-N-acetylglucosaminyltransferase III. Glycobiology 19:368–374, 2009.

    Article  PubMed  CAS  Google Scholar 

  40. Packer, N. H., C. W. von der Lieth, K. F. Aoki-Kinoshita, C. B. Lebrilla, et al. Frontiers in glycomics: bioinformatics and biomarkers in disease. An NIH white paper prepared from discussions by the focus groups at a workshop on the NIH campus, Bethesda MD (September 11–13, 2006). Proteomics 8:8–20, 2008.

    Article  PubMed  CAS  Google Scholar 

  41. Paulson, J. C., O. Blixt, and B. E. Collins. Sweet spots in functional glycomics. Nat. Chem. Biol. 2:238–248, 2006.

    Article  PubMed  CAS  Google Scholar 

  42. Perez, M., and C. B. Hirschberg. Translocation of UDP-N-acetylglucosamine into vesicles derived from rat liver rough endoplasmic reticulum and Golgi apparatus. J. Biol. Chem. 260:4671–4678, 1985.

    PubMed  CAS  Google Scholar 

  43. Rabouille, C., N. Hui, F. Hunte, R. Kieckbusch, et al. Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J. Cell Sci. 108(Pt 4):1617–1627, 1995.

    PubMed  CAS  Google Scholar 

  44. Rothman, J. E., and H. F. Lodish. Synchronised transmembrane insertion and glycosylation of a nascent membrane protein. Nature 269:775–780, 1977.

    Article  PubMed  CAS  Google Scholar 

  45. Rumjantseva, V., P. K. Grewal, H. H. Wandall, E. C. Josefsson, et al. Dual roles for hepatic lectin receptors in the clearance of chilled platelets. Nat. Med. 15:1273–1280, 2009.

    Article  PubMed  CAS  Google Scholar 

  46. Sackstein, R., J. S. Merzaban, D. W. Cain, N. M. Dagia, et al. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat. Med. 14:181–187, 2008.

    Article  PubMed  CAS  Google Scholar 

  47. Sahoo, S. S., C. Thomas, A. Sheth, C. Henson, et al. GLYDE-an expressive XML standard for the representation of glycan structure. Carbohydr. Res. 340:2802–2807, 2005.

    Article  PubMed  CAS  Google Scholar 

  48. Sarkar, A. K., T. A. Fritz, W. H. Taylor, and J. D. Esko. Disaccharide uptake and priming in animal cells: inhibition of sialyl Lewis X by acetylated Gal beta 1 → 4GlcNAc beta-O-naphthalenemethanol. Proc. Natl. Acad. Sci. USA 92:3323–3327, 1995.

    Article  PubMed  CAS  Google Scholar 

  49. Sarkar, D., P. K. Vemula, W. Zhao, A. Gupta, et al. Engineered mesenchymal stem cells with self-assembled vesicles for systemic cell targeting. Biomaterials 31:5266–5274, 2010.

    Article  PubMed  CAS  Google Scholar 

  50. Sasai, K., Y. Ikeda, T. Fujii, T. Tsuda, et al. UDP-GlcNAc concentration is an important factor in the biosynthesis of beta1, 6-branched oligosaccharides: regulation based on the kinetic properties of N-acetylglucosaminyltransferase V. Glycobiology 12:119–127, 2002.

    Article  PubMed  CAS  Google Scholar 

  51. Schachter, H. Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides. Biochem. Cell Biol. 64:163–181, 1986.

    Article  PubMed  CAS  Google Scholar 

  52. Shelikoff, M., A. J. Sinskey, and G. Stephanopoulos. A modeling framework for the study of protein glycosylation. Biotechnol. Bioeng. 50:73–90, 1996.

    Article  PubMed  CAS  Google Scholar 

  53. Son, Y. D., Y. T. Jeong, S. Y. Park, and J. H. Kim. Enhanced sialylation of recombinant human erythropoietin in Chinese hamster ovary cells by combinatorial engineering of selected genes. Glycobiology 21:1019–1028, 2011.

    Article  PubMed  CAS  Google Scholar 

  54. Spellman, M. W., L. J. Basa, C. K. Leonard, J. A. Chakel, et al. Carbohydrate structures of human tissue plasminogen activator expressed in Chinese hamster ovary cells. J. Biol. Chem. 264:14100–14111, 1989.

    PubMed  CAS  Google Scholar 

  55. Spiro, R. G. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R–56R, 2002.

    Article  PubMed  CAS  Google Scholar 

  56. Tang, C., A. S. Lee, J. P. Volkmer, D. Sahoo, et al. An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat. Biotechnol. 2011.

  57. Taniguchi, N., K. Honke, and M. Fukuda. Handbook of glycosyltransferases and related genes. Tokyo: Springer-Verlag, 2002.

    Book  Google Scholar 

  58. Taniguchi, N., A. Nishikawa, S. Fujii, and J. G. Gu. Glycosyltransferase assays using pyridylaminated acceptors: N-acetylglucosaminyltransferase III, IV, and V. Methods Enzymol. 179:397–408, 1989.

    Article  PubMed  CAS  Google Scholar 

  59. Taylor, M. E., and K. Drickamer. Introduction to glycobiology. Oxford: Oxford University Press, 2003.

    Google Scholar 

  60. Umana, P., and J. E. Bailey. A mathematical model of N-linked glycoform biosynthesis. Biotechnol. Bioeng. 55:890–908, 1997.

    Article  PubMed  CAS  Google Scholar 

  61. Varki, A., R. D. Cummings, J. D. Esko, H. H. Freeze, et al. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press, 2008.

    Google Scholar 

  62. von der Lieth, C. W., A. A. Freire, D. Blank, M. P. Campbell, et al. EUROCarbDB: an open-access platform for glycoinformatics. Glycobiology 21:493–502, 2011.

    Article  Google Scholar 

  63. Watson, E., A. Bhide, and H. van Halbeek. Structure determination of the intact major sialylated oligosaccharide chains of recombinant human erythropoietin expressed in Chinese hamster ovary cells. Glycobiology 4:227–237, 1994.

    Article  PubMed  CAS  Google Scholar 

  64. Zhang, C., B. R. Griffith, Q. Fu, C. Albermann, et al. Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions. Science 313:1291–1294, 2006.

    Article  PubMed  CAS  Google Scholar 

  65. Zhen, Y., R. M. Caprioli, and J. V. Staros. Characterization of glycosylation sites of the epidermal growth factor receptor. Biochemistry 42:5478–5492, 2003.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study is supported by NIH grants HL103411 and HL107146, and NYSTEM contract C024282.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriram Neelamegham.

Additional information

Associate Editor Scott I. Simon oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puri, A., Neelamegham, S. Understanding Glycomechanics Using Mathematical Modeling: A Review of Current Approaches to Simulate Cellular Glycosylation Reaction Networks. Ann Biomed Eng 40, 816–827 (2012). https://doi.org/10.1007/s10439-011-0464-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0464-5

Keywords

Navigation