Skip to main content

Advertisement

Log in

Glycoengineering of HCELL, the Human Bone Marrow Homing Receptor: Sweetly Programming Cell Migration

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The successful clinical implementation of adoptive cell therapeutics, including bone marrow transplantation and other stem cell-based treatments, depends critically on the ability to deliver cells to sites where they are needed. E-selectin, an endothelial C-type lectin, binds sialofucosylated carbohydrate determinants on its pertinent ligands. This molecule is expressed in a constitutive manner on bone marrow and dermal microvascular endothelium, and inducibly on post-capillary venules at all sites of tissue injury. Engagement of E-selectin with relevant ligand(s) expressed on circulating cells mediates initial “tethering/rolling” endothelial adhesive interactions prerequisite for extravasation of blood-borne cells at any target tissue. Most mammalian cells express high levels of a transmembrane glycoprotein known as CD44. A specialized glycoform of CD44 called “Hematopoietic Cell E-/L-selectin Ligand” (HCELL) is a potent E-selectin ligand expressed on human cells. Under native conditions, HCELL expression is restricted to human hematopoietic stem/progenitor cells. We have developed a technology called “Glycosyltransferase-Programmed Stereosubstitution” (GPS) for custom-modifying CD44 glycans to create HCELL on the surface of living cells. GPS-based glycoengineering of HCELL endows cell migration to endothelial beds expressing E-selectin. Enforced HCELL expression targets human mesenchymal stem cell homing to marrow, licensing transendothelial migration without chemokine signaling via a VLA-4/VCAM-1-dependent “Step 2-bypass pathway.” This review presents an historical framework of the homing receptor concept, and will describe the discovery of HCELL, its function as the bone marrow homing receptor, and how enforced expression of this molecule via chemical engineering of CD44 glycans could enable stem cell-based regenerative medicine and other adoptive cell therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Aizawa, S., and M. Tavassoli. In vitro homing of hemopoietic stem cells is mediated by a recognition system with galactosyl and mannosyl specificities. Proc. Natl Acad. Sci. USA. 84:4485–4489, 1987.

    Article  PubMed  CAS  Google Scholar 

  2. Alon, R., S. Chen, K. D. Puri, E. B. Finger, and T. A. Springer. The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling. J. Cell Biol. 138:1169–1180, 1997.

    Article  PubMed  CAS  Google Scholar 

  3. Baumheter, S., M. S. Singer, W. Henzel, S. Hemmerich, M. Renz, S. D. Rosen, and L. A. Lasky. Binding of L-selectin to the vascular sialomucin CD34. Science 262:436–438, 1993.

    Article  PubMed  CAS  Google Scholar 

  4. Berg, E. L., M. K. Robinson, O. Mansson, E. C. Butcher, and J. L. Magnani. A carbohydrate domain common to both sialyl Le(a) and sialyl Le(X) is recognized by the endothelial cell leukocyte adhesion molecule ELAM-1. J. Biol. Chem. 266:14869–14872, 1991.

    PubMed  CAS  Google Scholar 

  5. Berg, E. L., T. Yoshino, L. S. Rott, M. K. Robinson, R. A. Warnock, T. K. Kishimoto, L. J. Picker, and E. C. Butcher. The cutaneous lymphocyte antigen is a skin lymphocyte homing receptor for the vascular lectin endothelial cell-leukocyte adhesion molecule 1. J. Exp. Med. 174:1461–1466, 1991.

    Article  PubMed  CAS  Google Scholar 

  6. Bevilacqua, M., E. Butcher, B. Furie, B. Furie, M. Gallatin, M. Gimbrone, J. Harlan, K. Kishimoto, L. Lasky, R. McEver, et al. Selectins: a family of adhesion receptors. Cell 67:233, 1991.

    Article  PubMed  CAS  Google Scholar 

  7. Bevilacqua, M. P., and R. M. Nelson. Selectins. J. Clin. Invest. 91:379–387, 1993.

    Article  PubMed  CAS  Google Scholar 

  8. Brunk, D. K., and D. A. Hammer. Quantifying rolling adhesion with a cell-free assay: E-selectin and its carbohydrate ligands. Biophys. J. 72:2820–2833, 1997.

    Article  PubMed  CAS  Google Scholar 

  9. Carlow, D. A., K. Gossens, S. Naus, K. M. Veerman, W. Seo, and H. J. Ziltener. PSGL-1 function in immunity and steady state homeostasis. Immunol. Rev. 230:75–96, 2009.

    Article  PubMed  CAS  Google Scholar 

  10. Chen, S., R. Alon, R. C. Fuhlbrigge, and T. A. Springer. Rolling and transient tethering of leukocytes on antibodies reveal specializations of selectins. Proc. Natl Acad. Sci. USA. 94:3172–3177, 1997.

    Article  PubMed  CAS  Google Scholar 

  11. Chin, Y. H., G. D. Carey, and J. J. Woodruff. Lymphocyte recognition of lymph node high endothelium V. Isolation of adhesion molecules from lysates of rat lymphocytes. J. Immunol. 131:1368–1374, 1983.

    PubMed  CAS  Google Scholar 

  12. Chin, Y. H., R. Rasmussen, A. G. Cakiroglu, and J. J. Woodruff. Lymphocyte recognition of lymph node high endothelium. VI. Evidence of distinct structures mediating binding to high endothelial cells of lymph nodes and Peyer’s patches. J. Immunol. 133:2961–2965, 1984.

    PubMed  CAS  Google Scholar 

  13. Chin, Y. H., R. Sackstein, and J. P. Cai. Lymphocyte-homing receptors and preferential migration pathways. Proc. Soc. Exp. Biol. Med. 196:374–380, 1991.

    PubMed  CAS  Google Scholar 

  14. Chong, B. F., J. E. Murphy, T. S. Kupper, and R. C. Fuhlbrigge. E-selectin, thymus- and activation-regulated chemokine/CCL17, and intercellular adhesion molecule-1 are constitutively coexpressed in dermal microvessels: a foundation for a cutaneous immunosurveillance system. J. Immunol. 172:1575–1581, 2004.

    PubMed  CAS  Google Scholar 

  15. Dimitroff, C. J., J. Y. Lee, R. C. Fuhlbrigge, and R. Sackstein. A distinct glycoform of CD44 is an L-selectin ligand on human hematopoietic cells. Proc. Natl Acad. Sci. USA. 97:13841–13846, 2000.

    Article  PubMed  CAS  Google Scholar 

  16. Dimitroff, C. J., J. Y. Lee, S. Rafii, R. C. Fuhlbrigge, and R. Sackstein. CD44 is a major E-selectin ligand on human hematopoietic progenitor cells. J. Cell Biol. 153:1277–1286, 2001.

    Article  PubMed  CAS  Google Scholar 

  17. Dimitroff, C. J., J. Y. Lee, K. S. Schor, B. M. Sandmaier, and R. Sackstein. Differential L-selectin binding activities of human hematopoietic cell L-selectin ligands, HCELL and PSGL-1. J. Biol. Chem. 276:47623–47631, 2001.

    Article  PubMed  CAS  Google Scholar 

  18. Duijvestijn, A. M., E. Horst, S. T. Pals, B. N. Rouse, A. C. Steere, L. J. Picker, C. J. Meijer, and E. C. Butcher. High endothelial differentiation in human lymphoid and inflammatory tissues defined by monoclonal antibody HECA-452. Am. J. Pathol. 130:147–155, 1988.

    PubMed  CAS  Google Scholar 

  19. Eniola, A. O., P. J. Willcox, and D. A. Hammer. Interplay between rolling and firm adhesion elucidated with a cell-free system engineered with two distinct receptor-ligand pairs. Biophys. J. 85:2720–2731, 2003.

    Article  PubMed  CAS  Google Scholar 

  20. Finger, E. B., K. D. Puri, R. Alon, M. B. Lawrence, U. H. von Andrian, and T. A. Springer. Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature 379:266–269, 1996.

    Article  PubMed  CAS  Google Scholar 

  21. Florey, H. W., and L. H. Grant. Leucocyte migration from small blood vessels stimulated with ultraviolet light: an electron-microscope study. J. Pathol. Bacteriol. 82:13–17, 1961.

    Article  PubMed  CAS  Google Scholar 

  22. Fuhlbrigge, R. C., S. L. King, R. Sackstein, and T. S. Kupper. CD43 is a ligand for E-selectin on CLA+ human T cells. Blood 107:1421–1426, 2006.

    Article  PubMed  CAS  Google Scholar 

  23. Gallatin, M., T. P. St John, M. Siegelman, R. Reichert, E. C. Butcher, and I. L. Weissman. Lymphocyte homing receptors. Cell 44:673–680, 1986.

    Article  PubMed  CAS  Google Scholar 

  24. Gallatin, W. M., I. L. Weissman, and E. C. Butcher. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature 304:30–34, 1983.

    Article  PubMed  CAS  Google Scholar 

  25. Gesner, B. M., and J. L. Gowans. The output of lymphocytes from the thoracic duct of unanaesthetized mice. Br. J. Exp. Pathol. 43:424–430, 1962.

    PubMed  CAS  Google Scholar 

  26. Goldstein, L. A., D. F. Zhou, L. J. Picker, C. N. Minty, R. F. Bargatze, J. F. Ding, and E. C. Butcher. A human lymphocyte homing receptor, the Hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell 56:1063–1072, 1989.

    Article  PubMed  CAS  Google Scholar 

  27. Gowans, J. L. The recirculation of lymphocytes from blood to lymph in the rat. J. Physiol. 146:54–69, 1959.

    PubMed  CAS  Google Scholar 

  28. Gowans, J. L., and E. J. Knight. The route of re-circulation of lymphocytes in the rat. Proc. R. Soc. Lond. B Biol. Sci. 159:257–282, 1964.

    Article  PubMed  CAS  Google Scholar 

  29. Gunji, Y., M. Nakamura, T. Hagiwara, K. Hayakawa, H. Matsushita, H. Osawa, K. Nagayoshi, H. Nakauchi, M. Yanagisawa, Y. Miura, et al. Expression and function of adhesion molecules on human hematopoietic stem cells: CD34+ LFA-1-cells are more primitive than CD34+ LFA-1+ cells. Blood 80:429–436, 1992.

    PubMed  CAS  Google Scholar 

  30. Hanley, W. D., M. M. Burdick, K. Konstantopoulos, and R. Sackstein. CD44 on LS174T colon carcinoma cells possesses E-selectin ligand activity. Cancer Res. 65:5812–5817, 2005.

    Article  PubMed  CAS  Google Scholar 

  31. Hanley, W. D., S. L. Napier, M. M. Burdick, R. L. Schnaar, R. Sackstein, and K. Konstantopoulos. Variant isoforms of CD44 are P- and L-selectin ligands on colon carcinoma cells. FASEB J. 20:337–339, 2006.

    PubMed  CAS  Google Scholar 

  32. Hardy, C. L., and M. Tavassoli. Homing of hemopoietic stem cells to hemopoietic stroma. Adv. Exp. Med. Biol. 241:129–133, 1988.

    PubMed  CAS  Google Scholar 

  33. Imai, Y., M. S. Singer, C. Fennie, L. A. Lasky, and S. D. Rosen. Identification of a carbohydrate-based endothelial ligand for a lymphocyte homing receptor. J. Cell Biol. 113:1213–1221, 1991.

    Article  PubMed  CAS  Google Scholar 

  34. Jalkanen, S., R. F. Bargatze, J. de los Toyos, and E. C. Butcher. Lymphocyte recognition of high endothelium: antibodies to distinct epitopes of an 85–95-kD glycoprotein antigen differentially inhibit lymphocyte binding to lymph node, mucosal, or synovial endothelial cells. J. Cell Biol. 105:983–990, 1987.

    Article  PubMed  CAS  Google Scholar 

  35. Jalkanen, S. T., R. F. Bargatze, L. R. Herron, and E. C. Butcher. A lymphoid cell surface glycoprotein involved in endothelial cell recognition and lymphocyte homing in man. Eur. J. Immunol. 16:1195–1202, 1986.

    Article  PubMed  CAS  Google Scholar 

  36. Jalkanen, S., R. A. Reichert, W. M. Gallatin, R. F. Bargatze, I. L. Weissman, and E. C. Butcher. Homing receptors and the control of lymphocyte migration. Immunol. Rev. 91:39–60, 1986.

    Article  PubMed  CAS  Google Scholar 

  37. Jung, K., F. Linse, S. T. Pals, R. Heller, C. Moths, and C. Neumann. Adhesion molecules in atopic dermatitis: patch tests elicited by house dust mite. Contact Dermatitis 37:163–172, 1997.

    Article  PubMed  CAS  Google Scholar 

  38. Kansas, G. S., and M. O. Dailey. Expression of adhesion structures during B cell development in man. J. Immunol. 142:3058–3062, 1989.

    PubMed  CAS  Google Scholar 

  39. Katayama, Y., A. Hidalgo, J. Chang, A. Peired, and P. S. Frenette. CD44 is a physiological E-selectin ligand on neutrophils. J. Exp. Med. 201:1183–1189, 2005.

    Article  PubMed  CAS  Google Scholar 

  40. Lawrence, M. B., E. L. Berg, E. C. Butcher, and T. A. Springer. Rolling of lymphocytes and neutrophils on peripheral node addressin and subsequent arrest on ICAM-1 in shear flow. Eur. J. Immunol. 25:1025–1031, 1995.

    Article  PubMed  CAS  Google Scholar 

  41. Lawrence, M. B., G. S. Kansas, E. J. Kunkel, and K. Ley. Threshold levels of fluid shear promote leukocyte adhesion through selectins (CD62L, P, E). J. Cell Biol. 136:717–727, 1997.

    Article  PubMed  CAS  Google Scholar 

  42. Ley, K., C. Laudanna, M. I. Cybulsky, and S. Nourshargh. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7:678–689, 2007.

    Article  PubMed  CAS  Google Scholar 

  43. Liu, Z., J. J. Miner, T. Yago, L. Yao, F. Lupu, L. Xia, and R. P. McEver. Differential regulation of human and murine P-selectin expression and function in vivo. J. Exp. Med. 207:2975–2987, 2010.

    Article  PubMed  CAS  Google Scholar 

  44. Marchesi, V. T., and H. W. Florey. Electron micrographic observations on the emigration of leucocytes. Q. J. Exp. Physiol. Cogn. Med. Sci. 45:343–348, 1960.

    PubMed  CAS  Google Scholar 

  45. Marchesi, V. T., and J. L. Gowans. The migration of lymphocytes through the endothelium of venules in lymph nodes: an electron microscope study. Proc. R. Soc. Lond. B Biol. Sci. 159:283–290, 1964.

    Article  PubMed  CAS  Google Scholar 

  46. Merzaban, J. S., M. M. Burdick, S. Z. Gadhoum, N. M. Dagia, J. T. Chu, R. C. Fuhlbrigge, and R. Sackstein. Analysis of glycoprotein E-selectin ligands on human and mouse marrow cells enriched for hematopoietic stem/progenitor cells. Blood 118:1774–1783, 2011.

    Article  PubMed  CAS  Google Scholar 

  47. Nimrichter, L., M. M. Burdick, K. Aoki, W. Laroy, M. A. Fierro, S. A. Hudson, C. E. Von Seggern, R. J. Cotter, B. S. Bochner, M. Tiemeyer, K. Konstantopoulos, and R. L. Schnaar. E-selectin receptors on human leukocytes. Blood 112:3744–3752, 2008.

    Article  PubMed  CAS  Google Scholar 

  48. Oxley, S. M., and R. Sackstein. Detection of an L-selectin ligand on a hematopoietic progenitor cell line. Blood 84:3299–3306, 1994.

    PubMed  CAS  Google Scholar 

  49. Picker, L. J., J. De, M. J. los Toyos, B. F. Telen, and E. C. Haynes. Butcher. Monoclonal antibodies against the CD44 [In(Lu)-related p80], and Pgp-1 antigens in man recognize the Hermes class of lymphocyte homing receptors. J. Immunol. 142:2046–2051, 1989.

    PubMed  CAS  Google Scholar 

  50. Pluchino, S., L. Zanotti, B. Rossi, E. Brambilla, L. Ottoboni, G. Salani, M. Martinello, A. Cattalini, A. Bergami, R. Furlan, G. Comi, G. Constantin, and G. Martino. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436:266–271, 2005.

    Article  PubMed  CAS  Google Scholar 

  51. Polley, M. J., M. L. Phillips, E. Wayner, E. Nudelman, A. K. Singhal, S. Hakomori, and J. C. Paulson. CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x. Proc. Natl Acad. Sci. USA. 88:6224–6228, 1991.

    Article  PubMed  CAS  Google Scholar 

  52. Rasmussen, R. A., Y. H. Chin, J. J. Woodruff, and T. G. Easton. Lymphocyte recognition of lymph node high endothelium. VII. Cell surface proteins involved in adhesion defined by monoclonal anti-HEBFLN (A.11) antibody. J. Immunol. 135:19–24, 1985.

    PubMed  CAS  Google Scholar 

  53. Rosen, S. D. Ligands for L-selectin: homing, inflammation, and beyond. Annu. Rev. Immunol. 22:129–156, 2004.

    Article  PubMed  CAS  Google Scholar 

  54. Sackstein, R. Expression of an L-selectin ligand on hematopoietic progenitor cells. Acta Haematol. 97:22–28, 1997.

    Article  PubMed  CAS  Google Scholar 

  55. Sackstein, R. The bone marrow is akin to skin: HCELL and the biology of hematopoietic stem cell homing. J. Invest. Dermatol. 122:1061–1069, 2004.

    PubMed  CAS  Google Scholar 

  56. Sackstein, R. The lymphocyte homing receptors: gatekeepers of the multistep paradigm. Curr. Opin. Hematol. 12:444–450, 2005.

    Article  PubMed  Google Scholar 

  57. Sackstein, R. Glycosyltransferase-programmed stereosubstitution (GPS) to create HCELL: engineering a roadmap for cell migration. Immunol. Rev. 230:51–74, 2009.

    Article  PubMed  CAS  Google Scholar 

  58. Sackstein, R. Directing stem cell trafficking via GPS. Methods Enzymol. 479:93–105, 2010.

    Article  PubMed  CAS  Google Scholar 

  59. Sackstein, R. The biology of CD44 and HCELL in hematopoiesis: the ‘step 2-bypass pathway’ and other emerging perspectives. Curr. Opin. Hematol. 18:239–248, 2011.

    Article  PubMed  CAS  Google Scholar 

  60. Sackstein, R., and M. Borenstein. The effects of corticosteroids on lymphocyte recirculation in humans: analysis of the mechanism of impaired lymphocyte migration to lymph node following methylprednisolone administration. J. Investig. Med. 43:68–77, 1995.

    PubMed  CAS  Google Scholar 

  61. Sackstein, R., and C. J. Dimitroff. A hematopoietic cell L-selectin ligand that is distinct from PSGL-1 and displays N-glycan-dependent binding activity. Blood 96:2765–2774, 2000.

    PubMed  CAS  Google Scholar 

  62. Sackstein, R., L. Fu, and K. L. Allen. A hematopoietic cell L-selectin ligand exhibits sulfate-independent binding activity. Blood 89:2773–2781, 1997.

    PubMed  CAS  Google Scholar 

  63. Sackstein, R., and R. Fuhlbrigge. Western blot analysis of adhesive interactions under fluid shear conditions: the blot rolling assay. Methods Mol. Biol. 536:343–354, 2009.

    Article  PubMed  CAS  Google Scholar 

  64. Sackstein, R., J. S. Merzaban, D. W. Cain, N. M. Dagia, J. A. Spencer, C. P. Lin, and R. Wohlgemuth. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat. Med. 14:181–187, 2008.

    Article  PubMed  CAS  Google Scholar 

  65. Schweitzer, K. M., A. M. Drager, P. van der Valk, S. F. Thijsen, A. Zevenbergen, A. P. Theijsmeijer, C. E. van der Schoot, and M. M. Langenhuijsen. Constitutive expression of E-selectin and vascular cell adhesion molecule-1 on endothelial cells of hematopoietic tissues. Am. J. Pathol. 148:165–175, 1996.

    PubMed  CAS  Google Scholar 

  66. Siegelman, M., M. W. Bond, W. M. Gallatin, T. St John, H. T. Smith, V. A. Fried, and I. L. Weissman. Cell surface molecule associated with lymphocyte homing is a ubiquitinated branched-chain glycoprotein. Science 231:823–829, 1986.

    Article  PubMed  CAS  Google Scholar 

  67. Sipkins, D. A., X. Wei, J. W. Wu, J. M. Runnels, D. Cote, T. K. Means, A. D. Luster, D. T. Scadden, and C. P. Lin. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435:969–973, 2005.

    Article  PubMed  CAS  Google Scholar 

  68. Spertini, O., F. W. Luscinskas, G. S. Kansas, J. M. Munro, J. D. Griffin, M. A. Gimbrone, Jr., and T. F. Tedder. Leukocyte adhesion molecule-1 (LAM-1, L-selectin) interacts with an inducible endothelial cell ligand to support leukocyte adhesion. J. Immunol. 147:2565–2573, 1991.

    PubMed  CAS  Google Scholar 

  69. Springer, T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314, 1994.

    Article  PubMed  CAS  Google Scholar 

  70. St John, T., W. M. Gallatin, M. Siegelman, H. T. Smith, V. A. Fried, and I. L. Weissman. Expression cloning of a lymphocyte homing receptor cDNA: ubiquitin is the reactive species. Science 231:845–850, 1986.

    Article  PubMed  CAS  Google Scholar 

  71. Stamenkovic, I., M. Amiot, J. M. Pesando, and B. Seed. A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell 56:1057–1062, 1989.

    Article  PubMed  CAS  Google Scholar 

  72. Stamper, Jr., H. B., and J. J. Woodruff. Lymphocyte homing into lymph nodes: in vitro demonstration of the selective affinity of recirculating lymphocytes for high-endothelial venules. J. Exp. Med. 144:828–833, 1976.

    Article  PubMed  Google Scholar 

  73. Streeter, P. R., B. T. Rouse, and E. C. Butcher. Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J. Cell Biol. 107:1853–1862, 1988.

    Article  PubMed  CAS  Google Scholar 

  74. Terstappen, L. W., S. Huang, and L. J. Picker. Flow cytometric assessment of human T-cell differentiation in thymus and bone marrow. Blood 79:666–677, 1992.

    PubMed  CAS  Google Scholar 

  75. Thankamony, S. P., and R. Sackstein. Enforced hematopoietic cell E- and L-selectin ligand (HCELL) expression primes transendothelial migration of human mesenchymal stem cells. Proc. Natl Acad. Sci. USA. 108:2258–2263, 2011.

    Article  PubMed  CAS  Google Scholar 

  76. Weninger, W., L. H. Ulfman, G. Cheng, N. Souchkova, E. J. Quackenbush, J. B. Lowe, and U. H. von Andrian. Specialized contributions by alpha(1,3)-fucosyltransferase-IV and FucT-VII during leukocyte rolling in dermal microvessels. Immunity 12:665–676, 2000.

    Article  PubMed  CAS  Google Scholar 

  77. Woodruff, J., and B. M. Gesner. Lymphocytes: circulation altered by trypsin. Science 161:176–178, 1968.

    Article  PubMed  CAS  Google Scholar 

  78. Yao, L., H. Setiadi, L. Xia, Z. Laszik, F. B. Taylor, and R. P. McEver. Divergent inducible expression of P-selectin and E-selectin in mice and primates. Blood 94:3820–3828, 1999.

    PubMed  CAS  Google Scholar 

  79. Yusuf-Makagiansar, H., M. E. Anderson, T. V. Yakovleva, J. S. Murray, and T. J. Siahaan. Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Med. Res. Rev. 22:146–167, 2002.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank all my talented and devoted co-workers for their invaluable assistance in elucidating the structure and biology of HCELL. This study was supported by the National Institutes of Health, in particular, the National Heart Lung Blood Institute (PO1 HL107146, RO1 HL60528, RO1 HL73714) and the National Cancer Institute (RO1 CA121335). According to National Institutes of Health policies and procedures, the Brigham & Women’s Hospital has assigned intellectual property rights regarding HCELL to the inventor (RS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Sackstein.

Additional information

Associate Editor Konstantinos Konstantopoulos oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sackstein, R. Glycoengineering of HCELL, the Human Bone Marrow Homing Receptor: Sweetly Programming Cell Migration. Ann Biomed Eng 40, 766–776 (2012). https://doi.org/10.1007/s10439-011-0461-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0461-8

Keywords

Navigation