The Nuts and Bolts of Low-level Laser (Light) Therapy

Abstract

Soon after the discovery of lasers in the 1960s it was realized that laser therapy had the potential to improve wound healing and reduce pain, inflammation and swelling. In recent years the field sometimes known as photobiomodulation has broadened to include light-emitting diodes and other light sources, and the range of wavelengths used now includes many in the red and near infrared. The term “low level laser therapy” or LLLT has become widely recognized and implies the existence of the biphasic dose response or the Arndt-Schulz curve. This review will cover the mechanisms of action of LLLT at a cellular and at a tissular level and will summarize the various light sources and principles of dosimetry that are employed in clinical practice. The range of diseases, injuries, and conditions that can be benefited by LLLT will be summarized with an emphasis on those that have reported randomized controlled clinical trials. Serious life-threatening diseases such as stroke, heart attack, spinal cord injury, and traumatic brain injury may soon be amenable to LLLT therapy.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. 1.

    Abergel, R. P., R. F. Lyons, J. C. Castel, R. M. Dwyer, and J. Uitto. Biostimulation of wound healing by lasers: experimental approaches in animal models and in fibroblast cultures. J. Dermatol. Surg. Oncol. 13:127–133, 1987.

    PubMed  CAS  Google Scholar 

  2. 2.

    Ad, N., and U. Oron. Impact of low level laser irradiation on infarct size in the rat following myocardial infarction. Int. J. Cardiol. 80:109–116, 2001.

    PubMed  CAS  Google Scholar 

  3. 3.

    Almeida-Lopes, L., J. Rigau, and R. A. Zangaro. Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg. Med. 29:179–184, 2001.

    PubMed  CAS  Google Scholar 

  4. 4.

    Anneroth, G., G. Hall, H. Ryden, and L. Zetterqvist. The effect of low-energy infra-red laser radiation on wound healing in rats. Br. J. Oral. Maxillofac. Surg. 26:12–17, 1988.

    PubMed  CAS  Google Scholar 

  5. 5.

    Antunes, F., A. Boveris, and E. Cadenas. On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide. Proc. Natl Acad. Sci. USA. 101:16774–16779, 2004.

    PubMed  CAS  Google Scholar 

  6. 6.

    Ball, K. A., P. R. Castello, and R. O. Poyton. Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Implications for phototherapy. J. Photochem. Photobiol. B. 102:182–191, 2011.

    PubMed  CAS  Google Scholar 

  7. 7.

    Bisht, D., S. C. Gupta, and V. Mistra. Effect of low intensity laser radiation on healing of open skin wounds in rats. Indian J. Med. Res. 100:43–46, 1994.

    PubMed  CAS  Google Scholar 

  8. 8.

    Bisht, D., R. Mehrortra, P. A. Singh, S. C. Atri, and A. Kumar. Effect of helium-neon laser on wound healing. Indian J. Exp. Biol. 37:187–189, 1999.

    PubMed  CAS  Google Scholar 

  9. 9.

    Bjordal, J. M., C. Couppe, R. T. Chow, J. Tuner, and E. A. Ljunggren. A systematic review of low level laser therapy with location-specific doses for pain from chronic joint disorders. Aust. J. Physiother. 49:107–116, 2003.

    PubMed  Google Scholar 

  10. 10.

    Capaldi, R. A., F. Malatesta, and V. M. Darley-Usmar. Structure of cytochrome c oxidase. Biochim. Biophys. Acta 726:135–148, 1983.

    PubMed  CAS  Google Scholar 

  11. 11.

    Castano, A. P., T. Dai, I. Yaroslavsky, R. Cohen, W. A. Apruzzese, M. H. Smotrich, and M. R. Hamblin. Low-level laser therapy for zymosan-induced arthritis in rats: importance of illumination time. Lasers Surg. Med. 39:543–550, 2007.

    PubMed  Google Scholar 

  12. 12.

    Cauwels, R. G., and L. C. Martens. Low level laser therapy in oral mucositis: a pilot study. Eur. Arch Paediatr. Dent. 12:118–123, 2011.

    PubMed  CAS  Google Scholar 

  13. 13.

    Chandrasekhar, S. Radiative transfer. New York: Dover Publications, 1960.

  14. 14.

    Chang, W. D., J. H. Wu, J. A. Jiang, C. Y. Yeh, and C. T. Tsai. Carpal tunnel syndrome treated with a diode laser: a controlled treatment of the transverse carpal ligament. Photomed. Laser Surg. 26:551–557, 2008.

    PubMed  Google Scholar 

  15. 15.

    Chen, A. C.-H., P. R. Arany, Y.-Y. Huang, E. M. Tomkinson, T. Saleem, F. E. Yull, T. S. Blackwell, and M. R. Hamblin. Low level laser therapy activates NF-κB via generation of reactive oxygen species in mouse embryonic fibroblasts. Proc. SPIE. 7165:71650–71659, 2009.

    Google Scholar 

  16. 16.

    Cheong, W. F., S. A. Prahl, and A. J. Welch. A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 26:2166–2185, 1990.

    Google Scholar 

  17. 17.

    Chow, R. T., M. I. Johnson, R. A. Lopes-Martins, and J. M. Bjordal. Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374:1897–1908, 2009.

    PubMed  Google Scholar 

  18. 18.

    Christie, A., G. Jamtvedt, K. T. Dahm, R. H. Moe, E. Haavardsholm, and K. B. Hagen. Effectiveness of nonpharmacological and nonsurgical interventions for patients with rheumatoid arthritis: an overview of systematic reviews. Phys. Ther. 87:1697–1715, 2007.

    PubMed  Google Scholar 

  19. 19.

    da Silva, D. F., B. C. Vidal, D. M. Zezell, T. M. Zorn, S. C. Nunez, and M. S. Ribeiro. Collagen birefringence in skin repair in response to red polarized-laser therapy. J. Biomed. Opt. 11:024002, 2006.

    Google Scholar 

  20. 20.

    Demidova-Rice, T. N., E. V. Salomatina, A. N. Yaroslavsky, I. M. Herman, and M. R. Hamblin. Low-level light stimulates excisional wound healing in mice. Lasers Surg. Med. 39:706–715, 2007.

    PubMed  Google Scholar 

  21. 21.

    deTaboada, L., S. Ilic, S. Leichliter-Martha, U. Oron, A. Oron, J. Streeter, et al. Transcranial application of low-energy laser irradiation improves neurological deficits in rats following acute stroke. Lasers Surg. Med. 38:70–73, 2006.

    PubMed  Google Scholar 

  22. 22.

    el Sayed, S. O., and M. Dyson. Effect of laser pulse repetition rate and pulse duration on mast cell number and degranulation. Lasers Surg. Med. 19:433–437, 1996.

    PubMed  CAS  Google Scholar 

  23. 23.

    Emanet, S. K., L. I. Altan, and M. Yurtkuran. Investigation of the effect of GaAs laser therapy on lateral epicondylitis. Photomed. Laser Surg. 28:397–403, 2010.

    PubMed  Google Scholar 

  24. 24.

    Gigo-Benato, D., S. Geuna, and S. Rochkind. Phototherapy for enhancing peripheral nerve repair: a review of the literature. Muscle Nerve. 31:694–701, 2005.

    PubMed  Google Scholar 

  25. 25.

    Goodson, W. H., and T. K. Hunt. Wound healing and the diabetic patient. Surg. Gynecol. Obstet. 149:600–608, 1979.

    PubMed  Google Scholar 

  26. 26.

    Gouvea de Lima, A., R. C. Villar, G. de Castro, Jr., R. Antequera, E. Gil, M. C. Rosalmeida, M. H. Federico, and I. M. Snitcovsky. Oral mucositis prevention by low-level laser therapy in head-and-neck cancer patients undergoing concurrent chemoradiotherapy: a phase III randomized study. Int. J. Radiat. Oncol. Biol. Phys. 2010. [Epub ahead of print]. doi:10.1016/j.ijrobp.2010.10.012.

  27. 27.

    Greco, M., G. Guida, E. Perlino, E. Marra, and E. Quagliariello. Increase in RNA and protein synthesis by mitochondria irradiated with helium-neon laser. Biochem. Biophys. Res. Commun. 163:1428–1434, 1989.

    PubMed  CAS  Google Scholar 

  28. 28.

    Gur, A., A. Cosut, A. J. Sarac, R. Cevik, K. Nas, and A. Uyar. Efficacy of different therapy regimes of low-power laser in painful osteoarthritis of the knee: a double-blind and randomized-controlled trial. Lasers Surg. Med. 33:330–338, 2003.

    PubMed  Google Scholar 

  29. 29.

    Hashmi, J. T., Y.-Y. Huang, B. Z. Osmani, S. K. Sharma, M. A. Naeser, and M. R. Hamblin. Role of low-level laser therapy in neurorehabilitation. PM & R. 2:S292–S305, 2010.

    Google Scholar 

  30. 30.

    Hashmi, J. T., Y. Y. Huang, S. K. Sharma, D. B. Kurup, L. De Taboada, J. D. Carroll, and M. R. Hamblin. Effect of pulsing in low-level light therapy. Lasers Surg. Med. 42:450–466, 2010.

    PubMed  Google Scholar 

  31. 31.

    Hawkins, D., and H. Abrahamse. Biological effects of helium-neon laser irradiation on normal and wounded human skin fibroblasts. Photomed. Laser Surg. 23:251–259, 2005.

    PubMed  CAS  Google Scholar 

  32. 32.

    Hawkins, D., N. Houreld, and H. Abrahamse. Low level laser therapy (LLLT) as an effective therapeutic modality for delayed wound healing. Ann. NY Acad. Sci. 1056:486–493, 2005.

    PubMed  CAS  Google Scholar 

  33. 33.

    Haxsen, V., D. Schikora, U. Sommer, A. Remppis, J. Greten, and C. Kasperk. Relevance of laser irradiance threshold in the induction of alkaline phosphatase in human osteoblast cultures. Lasers Med. Sci. 23:381–384, 2008.

    PubMed  CAS  Google Scholar 

  34. 34.

    Hayworth, C. R., J. C. Rojas, E. Padilla, G. M. Holmes, E. C. Sheridan, and F. Gonzalez-Lima. In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem. Photobiol. 86:673–680, 2010.

    PubMed  CAS  Google Scholar 

  35. 35.

    Hegedus, B., L. Viharos, M. Gervain, and M. Galfi. The effect of low-level laser in knee osteoarthritis: a double-blind, randomized, placebo-controlled trial. Photomed. Laser Surg. 27:577–584, 2009.

    PubMed  Google Scholar 

  36. 36.

    Hoffmann, G. Principles and working mechanisms of water-filtered infrared-A (wIRA) in relation to wound healing. GMS Krankenhhyg Interdiszip. 2:Doc54, 2007.

  37. 37.

    Huang, Y.-Y., A. C.-H. Chen, J. D. Carroll, et al. Biphasic dose response in low level light therapy. Dose Response 7:358–383, 2009.

    PubMed  Google Scholar 

  38. 38.

    Huang, Y. Y., S. K. Sharma, J. D. Carroll, and M. R. Hamblin. Biphasic dose response in low level light therapy—an update. Dose Response 2011, in press.

  39. 39.

    Huang, C. Y., R. S. Yang, T. S. Kuo, and K. H. Hsu. Phantom limb pain treated by far infrared ray. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009:1589–1591, 2009.

    PubMed  Google Scholar 

  40. 40.

    Jamtvedt, G., K. T. Dahm, A. Christie, R. H. Moe, E. Haavardsholm, I. Holm, and K. B. Hagen. Physical therapy interventions for patients with osteoarthritis of the knee: an overview of systematic reviews. Phys. Ther. 88:123–136, 2008.

    PubMed  Google Scholar 

  41. 41.

    Kana, J. S., G. Hutschenreiter, D. Haina, and W. Waidelich. Effect of low-power density laser radiation on healing of open skin wounds in rats. Arch. Surg. 116:293–296, 1981.

    PubMed  CAS  Google Scholar 

  42. 42.

    Karu, T. I. Photobiological fundamentals of low-power laser therapy. IEEE J. Quantum Electron. 23:1703–1717, 1987.

    Google Scholar 

  43. 43.

    Karu, T. I. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J. Photochem. Photobiol. B. 49:1–17, 1999.

    PubMed  CAS  Google Scholar 

  44. 44.

    Karu, T. I., and N. I. Afanas’eva. Cytochrome c oxidase as the primary photoacceptor upon laser exposure of cultured cells to visible and near IR-range light. Dokl. Akad. Nauk. 342:693–695, 1995.

    PubMed  CAS  Google Scholar 

  45. 45.

    Karu, T. I., and S. F. Kolyakov. Exact action spectra for cellular responses relevant to phototherapy. Photomed. Laser Surg. 23:355–361, 2005.

    PubMed  CAS  Google Scholar 

  46. 46.

    Karu, T. I., L. V. Pyatibrat, and N. I. Afanasyeva. Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg. Med. 36:307–314, 2005.

    PubMed  Google Scholar 

  47. 47.

    Karu, T. I., L. V. Pyatibrat, and G. S. Kalendo. Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J. Photochem. Photobiol. B 27:219–223, 1995.

    PubMed  CAS  Google Scholar 

  48. 48.

    Kaviani, A., G. E. Djavid, L. Ataie-Fashtami, M. Fateh, M. Ghodsi, M. Salami, N. Zand, N. Kashef, and B. Larijani. A randomized clinical trial on the effect of low-level laser therapy on chronic diabetic foot wound healing: a preliminary report. Photomed. Laser Surg. 29:109–114, 2011.

    PubMed  Google Scholar 

  49. 49.

    Kokol, R., C. Berger, J. Haas, and D. Kopera. Venous leg ulcers: no improvement of wound healing with 685-nm low level laser therapy. Randomised, placebo-controlled, double-blind study. Hautarzt 56:570–575, 2005.

    PubMed  CAS  Google Scholar 

  50. 50.

    Lam, L. K., and G. L. Cheing. Effects of 904-nm low-level laser therapy in the management of lateral epicondylitis: a randomized controlled trial. Photomed. Laser Surg. 25:65–71, 2007.

    PubMed  Google Scholar 

  51. 51.

    Lampl, Y., J. A. Zivin, M. Fisher, R. Lew, L. Welin, B. Dahlof, P. Borenstein, B. Andersson, J. Perez, C. Caparo, S. Ilic, and U. Oron. Infrared laser therapy for ischemic stroke: a new treatment strategy: results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1). Stroke 38:1843–1849, 2007.

    PubMed  Google Scholar 

  52. 52.

    Lane, N. Cell biology: power games. Nature 443:901–903, 2006.

    PubMed  CAS  Google Scholar 

  53. 53.

    Lanzafame, R. J., I. Stadler, A. F. Kurtz, R. Connelly, T. A. Peter, Sr., P. Brondon, and D. Olson. Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model. Lasers Surg. Med. 39:534–542, 2007.

    PubMed  Google Scholar 

  54. 54.

    Lapchak, P. A., K. F. Salgado, C. H. Chao, and J. A. Zivin. Transcranial near-infrared light therapy improves motor function following embolic strokes in rabbits: an extended therapeutic window study using continuous and pulse frequency delivery modes. Neuroscience 148:907–914, 2007.

    PubMed  CAS  Google Scholar 

  55. 55.

    Leavitt, M., G. Charles, E. Heyman, and D. Michaels. HairMax LaserComb laser phototherapy device in the treatment of male androgenetic alopecia: a randomized, double-blind, sham device-controlled, multicentre trial. Clin. Drug Invest. 29:283–292, 2009.

    Google Scholar 

  56. 56.

    Lebed’kov, E. V., P. I. Tolstykh, L. F. Marchenko, T. I. Turkina, and V. T. Krivikhin. The effect of the laser irradiation of the blood on its lipid and phospholipid components in diabetes mellitus. Voen Med. Zh. 319:37–38, 95, 1998.

    Google Scholar 

  57. 57.

    Lee, G., R. M. Ikeda, R. M. Dwyer, H. Hussein, P. Dietrich, and D. T. Mason. Feasibility of intravascular laser irradiation for in vivo visualization and therapy of cardiocirculatory diseases. Am. Heart J. 103:1076–1077, 1982.

    PubMed  CAS  Google Scholar 

  58. 58.

    Lima, A. G., R. Antequera, M. P. Peres, I. M. Snitcosky, M. H. Federico, and R. C. Villar. Efficacy of low-level laser therapy and aluminum hydroxide in patients with chemotherapy and radiotherapy-induced oral mucositis. Braz Dent J. 21:186–192, 2010.

    PubMed  Google Scholar 

  59. 59.

    Lin, Y. S., M. H. Huang, and C. Y. Chai. Effects of helium-neon laser on the mucopolysaccharide induction in experimental osteoarthritic cartilage. Osteoarthr. Cartil. 14:377–383, 2006.

    PubMed  Google Scholar 

  60. 60.

    Loevschall, H., and D. Arenholt-Bindeslev. Effect of low level diode laser irradiation of human oral mucosa fibroblasts in vitro. Lasers Surg. Med. 14:347–354, 1994.

    PubMed  CAS  Google Scholar 

  61. 61.

    Lohr, N. L., A. Keszler, P. Pratt, M. Bienengraber, D. C. Warltier, and N. Hogg. Enhancement of nitric oxide release from nitrosyl hemoglobin and nitrosyl myoglobin by red/near infrared radiation: potential role in cardioprotection. J. Mol. Cell. Cardiol. 47:256–263, 2009.

    PubMed  CAS  Google Scholar 

  62. 62.

    Lundeberg, T., and M. Malm. Low-power HeNe laser treatment of venous leg ulcers. Ann. Plast. Surg. 27:537–539, 1991.

    PubMed  CAS  Google Scholar 

  63. 63.

    Martius, F. Das Amdt-Schulz Grandgesetz. Munch. Med. Wschr. 70:1005–1006, 1923.

    Google Scholar 

  64. 64.

    McCarthy, T. J., L. De Taboada, P. K. Hildebrandt, E. L. Ziemer, S. P. Richieri, and J. Streeter. Long-term safety of single and multiple infrared transcranial laser treatments in Sprague-Dawley rats. Photomed. Laser Surg. 28:663–667, 2010.

    PubMed  Google Scholar 

  65. 65.

    McGuff, P. E., D. Bushnell, H. S. Soroff, and R. A. Deterling, Jr. Studies of the surgical applications of laser (light amplification by stimulated emission of radiation). Surg. Forum. 14:143–145, 1963.

    PubMed  CAS  Google Scholar 

  66. 66.

    Medalha, C. C., B. O. Amorim, J. M. Ferreira, P. Oliveira, R. M. Pereira, C. Tim, A. P. Lirani-Galvao, O. L. da Silva, and A. C. Renno. Comparison of the effects of electrical field stimulation and low-level laser therapy on bone loss in spinal cord-injured rats. Photomed. Laser Surg. 28:669–674, 2010.

    PubMed  Google Scholar 

  67. 67.

    Medrado, A. R., L. S. Pugliese, S. R. Reis, and Z. A. Andrade. Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg. Med. 32:239–244, 2003.

    Google Scholar 

  68. 68.

    Mester, E., A. F. Mester, and A. Mester. The biomedical effects of laser application. Lasers Surg. Med. 5:31–39, 1985.

    PubMed  CAS  Google Scholar 

  69. 69.

    Mester, E., S. Nagylucskay, A. Doklen, and S. Tisza. Laser stimulation of wound healing. Acta Chir. Acad. Sci. Hung. 17:49–55, 1976.

    PubMed  CAS  Google Scholar 

  70. 70.

    Mester, E., T. Spiry, B. Szende, and J. G. Tota. Effect of laser rays on wound healing. Am. J. Surg. 122:532–535, 1971.

    PubMed  CAS  Google Scholar 

  71. 71.

    Mester, E., B. Szende, T. Spiry, and A. Scher. Stimulation of wound healing by laser rays. Acta Chir. Acad. Sci. Hung. 13:315–324, 1972.

    PubMed  CAS  Google Scholar 

  72. 72.

    Mester, E., B. Szende, and J. G. Tota. Effect of laser on hair growth of mice. Kiserl Orvostud. 19:628–631, 1967.

    Google Scholar 

  73. 73.

    Meyers, A. D. Lasers and wound healing. Arch. Otolaryngol. Head Neck Surg. 116:1128, 1990.

    PubMed  CAS  Google Scholar 

  74. 74.

    Michalikova, S., A. Ennaceur, R. van Rensburg, and P. L. Chazot. Emotional responses and memory performance of middle-aged CD1 mice in a 3D maze: effects of low infrared light. Neurobiol. Learn. Mem. 89:480–488, 2008.

    PubMed  CAS  Google Scholar 

  75. 75.

    Moges, H., O. M. Vasconcelos, W. W. Campbell, R. C. Borke, J. A. McCoy, L. Kaczmarczyk, J. Feng, and J. J. Anders. Light therapy and supplementary Riboflavin in the SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis (FALS). Lasers Surg. Med. 41:52–59, 2009.

    PubMed  Google Scholar 

  76. 76.

    Moore, P., T. D. Ridgway, R. G. Higbee, E. W. Howard, and M. D. Lucroy. Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg. Med. 36:8–12, 2005.

    PubMed  Google Scholar 

  77. 77.

    Moreira, M. S., I. T. Velasco, L. S. Ferreira, S. K. Ariga, D. F. Barbeiro, D. T. Meneguzzo, F. Abatepaulo, and M. M. Marques. Effect of phototherapy with low intensity laser on local and systemic immunomodulation following focal brain damage in rat. J. Photochem. Photobiol. B. 97:145–151, 2009.

    PubMed  CAS  Google Scholar 

  78. 78.

    Moreno, I., and C. C. Sun. Modeling the radiation pattern of LEDs. Opt. Express 16:1808–1819, 2008.

    PubMed  Google Scholar 

  79. 79.

    Naeser, M. A., A. Saltmarche, M. H. Krengel, M. R. Hamblin, and J. A. Knight. Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports. Photomed. Laser Surg. 29:351–358, 2011.

    PubMed  Google Scholar 

  80. 80.

    Noble, P. B., E. D. Shields, P. D. Blecher, and K. C. Bentley. Locomotory characteristics of fibroblasts within a three-dimensional collagen lattice: modulation by a Helium/Neon soft laser. Lasers Surg. Med. 12:669–674, 1992.

    PubMed  CAS  Google Scholar 

  81. 81.

    Oron, A., U. Oron, J. Chen, A. Eilam, C. Zhang, M. Sadeh, Y. Lampl, J. Streeter, L. DeTaboada, and M. Chopp. Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke 37:2620–2624, 2006.

    PubMed  Google Scholar 

  82. 82.

    Oron, A., U. Oron, J. Streeter, L. de Taboada, A. Alexandrovich, V. Trembovler, and E. Shohami. Low-level laser therapy applied transcranially to mice following traumatic brain injury significantly reduces long-term neurological deficits. J. Neurotrauma. 24:651–656, 2007.

    PubMed  Google Scholar 

  83. 83.

    Passarella, S., E. Casamassima, S. Molinari, D. Pastore, E. Quagliariello, I. M. Catalano, and A. Cingolani. Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser. FEBS Lett. 175:95–99, 1984.

    PubMed  CAS  Google Scholar 

  84. 84.

    Pastore, D., M. Greco, V. A. Petragallo, and S. Passarella. Increase in H+/e ratio of the cytochrome c oxidase reaction in mitochondria irradiated with helium-neon laser. Biochem. Mol. Biol. Int. 34:817–826, 1994.

    PubMed  CAS  Google Scholar 

  85. 85.

    Pereira, A. N., P. Eduardo Cde, E. Matson, and M. M. Marques. Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg. Med. 31:263–267, 2002.

    PubMed  Google Scholar 

  86. 86.

    Pinheiro, A. L., D. H. Pozza, M. G. Oliveira, R. Weissmann, and L. M. Ramalho. Polarized light (400–2000 nm) and non-ablative laser (685 nm): a description of the wound healing process using immunohistochemical analysis. Photomed. Laser Surg. 23:485–492, 2005.

    PubMed  Google Scholar 

  87. 87.

    Posten, W., D. A. Wrone, J. S. Dover, K. A. Arndt, S. Silapunt, and M. Alam. Low-level laser therapy for wound healing: mechanism and efficiency. Dermatol. Surg. 31:334–340, 2005.

    PubMed  CAS  Google Scholar 

  88. 88.

    Poyton, R. O., and K. A. Ball. Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome c oxidase. Discov. Med. 11:154–159, 2011.

    PubMed  Google Scholar 

  89. 89.

    Raskin, P., J. F. Marks, H. Burns, M. D. Plumer, and M. D. L. Siperstein. Capillary basement membrane within diabetic children. Am. J. Med. 58:365–375, 1975.

    PubMed  CAS  Google Scholar 

  90. 90.

    Reddy, G. K., L. Stehno-Bittel, and C. S. Enwemeka. Laser photostimulation accelerates wound healing in diabetic rats. Wound Repair Regen. 9:248–255, 2001.

    PubMed  CAS  Google Scholar 

  91. 91.

    Ribeiro, M. S., D. F. Da Silva, C. E. De Araujo, S. F. De Oliveira, C. M. Pelegrini, T. M. Zorn, and D. M. Zezell. Effects of low-intensity polarized visible laser radiation on skin burns: a light microscopy study. J. Clin. Laser Med. Surg. 22:59–66, 2004.

    PubMed  Google Scholar 

  92. 92.

    Rubio, C. R., D. Cremonezzi, M. Moya, F. Soriano, J. Palma, and V. Campana. Helium-neon laser reduces the inflammatory process of arthritis. Photomed. Laser Surg. 28:125–129, 2010.

    PubMed  Google Scholar 

  93. 93.

    Sandford, M. A., and L. J. Walsh. Thermal effects during desensitisation of teeth with gallium-aluminium-arsenide lasers. Periodontology 15:25–30, 1994.

    Google Scholar 

  94. 94.

    Santana-Blank, L., and E. Rodriguez-Santana. The interaction of light with nanoscopic layers of water may be essential to the future of photobiomodulation. Photomed. Laser Surg. 28(Suppl 1):S173–S174, 2010.

    PubMed  Google Scholar 

  95. 95.

    Santana-Blank, L., E. Rodriguez-Santana, and K. Santana-Rodriguez. Theoretic, experimental, clinical bases of the water oscillator hypothesis in near-infrared photobiomodulation. Photomed. Laser Surg. 28(Suppl 1):S41–S52, 2010.

    PubMed  CAS  Google Scholar 

  96. 96.

    Schiffer, F., A. L. Johnston, C. Ravichandran, A. Polcari, M. H. Teicher, R. H. Webb, and M. R. Hamblin. Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav. Brain Funct. 5:46, 2009.

    PubMed  Google Scholar 

  97. 97.

    Schikora, D. Laserneedle acupuncture: a critical review and recent results. Med. Acupunct. 20:37–42, 2008.

    Google Scholar 

  98. 98.

    Schindl, A., G. Heinze, M. Schindl, H. Pernerstorfer-Schon, and L. Schindl. Systemic effects of low-intensity laser irradiation on skin microcirculation in patients with diabetic microangiopathy. Microvasc. Res. 64:240–246, 2002.

    PubMed  Google Scholar 

  99. 99.

    Schindl, A., M. Schindl, and H. Pernerstorfer-Schon. Low intensity laser irradiation in the treatment of recalcitrant radiation ulcers in patients with breast cancer–long-term results of 3 cases. Photodermatol. Photoimmunol. Photomed. 16:34–37, 2000.

    PubMed  CAS  Google Scholar 

  100. 100.

    Schindl, A., M. Schindl, H. Schon, R. Knobler, L. Havelec, and L. Schindl. Low-intensity laser irradiation improves skin circulation in patients with diabetic microangiopathy. Diabetes Care. 21:580–584, 1998.

    PubMed  CAS  Google Scholar 

  101. 101.

    Shen, J., L. Xie, X. O. Mao, Y. Zhou, R. Zhan, D. A. Greenberg, and K. Jin. Neurogenesis after primary intracerebral hemorrhage in adult human brain. J. Cereb. Blood Flow Metab. 28:1460–1468, 2008.

    PubMed  Google Scholar 

  102. 102.

    Shooshtari, S. M., V. Badiee, S. H. Taghizadeh, A. H. Nematollahi, A. H. Amanollahi, and M. T. Grami. The effects of low level laser in clinical outcome and neurophysiological results of carpal tunnel syndrome. Electromyogr. Clin. Neurophysiol. 48:229–231, 2008.

    PubMed  CAS  Google Scholar 

  103. 103.

    Simunovic, Z., T. Trobonjaca, and Z. Trobonjaca. Treatment of medial and lateral epicondylitis–tennis and golfer’s elbow—with low level laser therapy: a multicenter double blind, placebo-controlled clinical study on 324 patients. J. Clin. Laser Med. Surg. 16:145–151, 1998.

    PubMed  CAS  Google Scholar 

  104. 104.

    Skinner, S. M., J. P. Gage, P. A. Wilce, and R. M. Shaw. A preliminary study of the effects of laser radiation on collagen metabolism in cell culture. Aust. Dent. J. 41:188–192, 1996.

    PubMed  CAS  Google Scholar 

  105. 105.

    Sommer, A. P., A. L. Pinheiro, A. R. Mester, R. P. Franke, and H. T. Whelan. Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA’s light-emitting diode array system. J. Clin. Laser Med. Surg. 19:29–33, 2001.

    PubMed  CAS  Google Scholar 

  106. 106.

    Spanheimer, R. G., G. E. Umpierrez, and V. Stumpf. Decreased collagen production in diabetic rats. Diabetes 37:371–376, 1988.

    PubMed  CAS  Google Scholar 

  107. 107.

    Stebliukova, I. A., N. B. Khairetdinova, A. M. Belov, and N. A. Kakitelashvili. Effects of low-energy laser irradiation on platelet aggregation in cerebrovascular disorders. Sov. Med. (3):77–80, 1989.

  108. 108.

    Sutherland, J. C. Biological effects of polychromatic light. Photochem. Photobiol. 76:164–170, 2002.

    PubMed  CAS  Google Scholar 

  109. 109.

    Tadakuma, T. Possible application of the laser in immunobiology. Keio J. Med. 42:180–182, 1993.

    PubMed  CAS  Google Scholar 

  110. 110.

    Tascioglu, F., N. A. Degirmenci, S. Ozkan, and O. Mehmetoglu. Low-level laser in the treatment of carpal tunnel syndrome: clinical, electrophysiological, and ultrasonographical evaluation. Rheumatol. Int. 2010. [Epub ahead of print]. doi:10.1007/s00296-010-1652-6.

  111. 111.

    Thomas, D. W., I. D. O’Neill, K. G. Harding, and J. P. Shepherd. Cutaneous wound healing: a current perspective. J. Oral Maxillofac. Surg. 53:442–447, 1995.

    PubMed  CAS  Google Scholar 

  112. 112.

    Trimmer, P. A., K. M. Schwartz, M. K. Borland, L. DeTaboada, J. Streeter, and U. Oron. Reduced axonal transport in Parkinson’s disease cybrid neurites is restored by light therapy. Mol. Neurodegener. 4:26, 2009.

    PubMed  Google Scholar 

  113. 113.

    Tuby, H., L. Maltz, and U. Oron. Modulations of VEGF and iNOS in the rat heart by low level laser therapy are associated with cardioprotection and enhanced angiogenesis. Lasers Surg. Med. 38:682–688, 2006.

    PubMed  Google Scholar 

  114. 114.

    Wahl, G., and S. Bastanier. Soft laser in postoperative care in dentoalveolar treatment. ZWR 100:512–515, 1991.

    PubMed  CAS  Google Scholar 

  115. 115.

    Walsh, L. J., G. Trinchieri, H. A. Waldorf, D. Whitaker, and G. F. Murphy. Human dermal mast cells contain and release tumor necrosis factor-alpha which induces endothelial leukocyte adhesion molecule-1. Proc. Natl Acad. Sci. USA. 88:4220–4224, 1991.

    PubMed  CAS  Google Scholar 

  116. 116.

    Webb, C., M. Dyson, and W. H. Lewis. Stimulatory effect of 660 nm low level laser energy on hypertrophic scar-derived fibroblasts: possible mechanisms for increase in cell counts. Lasers Surg. Med. 22:294–301, 1998.

    PubMed  CAS  Google Scholar 

  117. 117.

    Weber, M. H., and T. W. Fussgänger-May. Intravenous laser blood irradiation. German J. Acupunct. Rel. Tech. 50:12–23, 2007.

    Google Scholar 

  118. 118.

    Welch, A. J., J. H. Torres, and W. F. Cheong. Laser physics and laser-tissue interaction. Tex. Heart Inst. J. 16:141–149, 1989.

    PubMed  CAS  Google Scholar 

  119. 119.

    Whittaker, P. Laser acupuncture: past, present, and future. Lasers Med. Sci. 19:69–80, 2004.

    PubMed  Google Scholar 

  120. 120.

    Wu, X., A. E. Dmitriev, M. J. Cardoso, A. G. Viers-Costello, R. C. Borke, J. Streeter, and J. J. Anders. 810 nm wavelength light: an effective therapy for transected or contused rat spinal cord. Lasers Surg. Med. 41:36–41, 2009.

    PubMed  Google Scholar 

  121. 121.

    Wu, Q., Y. Y. Huang, S. Dhital, S. K. Sharma, A. C. Chen, M. J. Whalen, and M. R. Hamblin. Low level laser therapy for traumatic brain injury. Proc. SPIE. 7552:755201–755206, 2010.

    Google Scholar 

  122. 122.

    Xiao, L., Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, and J. Kido. Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv. Mater. 23:926–952, 2011.

    PubMed  CAS  Google Scholar 

  123. 123.

    Yang, Z., Y. Wu, H. Zhang, P. Jin, W. Wang, J. Hou, Y. Wei, and S. Hu. Low-level laser irradiation alters cardiac cytokine expression following acute myocardial infarction: a potential mechanism for laser therapy. Photomed. Laser Surg. 29:391–398, 2011.

    PubMed  CAS  Google Scholar 

  124. 124.

    Yu, W., J. O. Naim, and J. Lanzafame. Effects of photostimulation on wound healing in diabetic mice. Lasers Surg. Med. 20:56–63, 1997.

    PubMed  CAS  Google Scholar 

  125. 125.

    Yu, H. S., C. S. Wu, C. L. Yu, Y. H. Kao, and M. H. Chiou. Helium-neon laser irradiation stimulates migration and proliferation in melanocytes and induces repigmentation in segmental-type vitiligo. J. Invest. Dermatol. 120:56–64, 2003.

    PubMed  CAS  Google Scholar 

  126. 126.

    Zand, N., L. Ataie-Fashtami, G. E. Djavid, M. Fateh, M. R. Alinaghizadeh, S. M. Fatemi, and F. Arbabi-Kalati. Relieving pain in minor aphthous stomatitis by a single session of non-thermal carbon dioxide laser irradiation. Lasers Med. Sci. 24:515–520, 2009.

    PubMed  Google Scholar 

  127. 127.

    Zhang, R., Y. Mio, P. F. Pratt, N. Lohr, D. C. Warltier, H. T. Whelan, D. Zhu, E. R. Jacobs, M. Medhora, and M. Bienengraeber. Near infrared light protects cardiomyocytes from hypoxia and reoxygenation injury by a nitric oxide dependent mechanism. J. Mol. Cell. Cardiol. 46:4–14, 2009.

    PubMed  CAS  Google Scholar 

  128. 128.

    Zhang, Y., S. Song, C. C. Fong, C. H. CTsang, Z. Yang, and M. Yang. cDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light. J. Invest. Dermatol. 120:849–857, 2003.

    PubMed  CAS  Google Scholar 

  129. 129.

    Zhang, L., D. Xing, D. Zhu, and Q. Chen. Low-power laser irradiation inhibiting Abeta25–35-induced PC12 cell apoptosis via PKC activation. Cell Physiol. Biochem. 22:215–222, 2008.

    PubMed  CAS  Google Scholar 

  130. 130.

    Zivin, J. A., G. W. Albers, N. Bornstein, T. Chippendale, B. Dahlof, T. Devlin, M. Fisher, W. Hacke, W. Holt, S. Ilic, S. Kasner, R. Lew, M. Nash, J. Perez, M. Rymer, P. Schellinger, D. Schneider, S. Schwab, R. Veltkamp, M. Walker, and J. Streeter. Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke 40:1359–1364, 2009.

    PubMed  Google Scholar 

  131. 131.

    Zycinski, P., M. Krzeminska-Pakula, C. Peszynski-Drews, A. Kierus, E. Trzos, T. Rechcinski, L. Figiel, M. Kurpesa, M. Plewka, L. Chrzanowski, and J. Drozdz. Laser biostimulation in end-stage multivessel coronary artery disease–a preliminary observational study. Kardiol. Pol. 65:13–21, 2007; discussion 22–13.

    Google Scholar 

Download references

Acknowledgments

Funding: Research in the Hamblin laboratory is supported by NIH grant R01AI050875, Center for Integration of Medicine and Innovative Technology (DAMD17-02-2-0006), CDMRP Program in TBI (W81XWH-09-1-0514) and Air Force Office of Scientific Research (FA9950-04-1-0079). Tianhong Dai was supported by an Airlift Research Foundation Extremity Trauma Research Grant (grant 109421).

Conflicts of interest

James D. Carroll is the owner of THOR Photomedicine, a company which sells LLLT devices.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael R. Hamblin.

Additional information

Associate Editor Daniel Elson oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chung, H., Dai, T., Sharma, S.K. et al. The Nuts and Bolts of Low-level Laser (Light) Therapy. Ann Biomed Eng 40, 516–533 (2012). https://doi.org/10.1007/s10439-011-0454-7

Download citation

Keywords

  • Low level laser therapy
  • Photobiomodulation
  • Mitochondria
  • Tissue optics
  • Wound healing
  • Hair regrowth
  • Laser acupuncture