Skip to main content
Log in

Metabolic Oligosaccharide Engineering: Implications for Selectin-Mediated Adhesion and Leukocyte Extravasation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Metabolic oligosaccharide engineering is an emerging technology wherein non-natural monosaccharide analogs are exogenously supplied to living cells and are biosynthetically incorporated into cell surface glycans. A recently reported application of this methodology employs fluorinated analogs of ManNAc, GlcNAc, and GalNAc to modulate selectin-mediated adhesion associated with leukocyte extravasation and cancer cell metastasis. This monograph outlines possible mechanisms underlying the altered adhesion observed in analog-treated cells; these range from the most straightforward explanation (e.g., structural changes to the selectin ligands ablate interaction with their receptors) to the alternative mechanism where the analogs inhibit or otherwise perturb ligand production to more indirect mechanisms (e.g., changes to the biophysical properties of the selectin binding partner, the nanoenviroment of the binding partners, or the entire cell surface).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Aich, U., C. T. Campbell, N. Elmouelhi, C. A. Weier, S. G. Sampathkumar, S. S. Choi, and K. J. Yarema. Regioisomeric SCFA attachment to hexosamines separates metabolic flux from cytotoxicity and MUC1 suppression. ACS Chem. Biol. 3(4):230–240, 2008.

    Article  PubMed  CAS  Google Scholar 

  2. Aich, U., and K. J. Yarema. Non-natural sugar analogues: chemical probes for metabolic oligosaccharide engineering. In: Glycoscience, edited by B. O. Fraser-Reid, K. Tatsuta, and J. Thiem. Berlin: Springer, 2008, pp. 2133–2190.

    Chapter  Google Scholar 

  3. Alon, R., and S. Rosen. Rolling on N-linked glycans: a new way to present L-selectin binding sites. Nat. Immunol. 8(4):339–341, 2007.

    Article  PubMed  CAS  Google Scholar 

  4. Amano, M., M. Galvan, J. He, and L. G. Baum. The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. J. Biol. Chem. 278(9):7469–7475, 2003.

    Article  PubMed  CAS  Google Scholar 

  5. Bakowsky, U., G. Schumacher, C. Gege, R. R. Schmidt, U. Rothe, and G. Bendas. Cooperation between lateral ligand mobility and accessibility for receptor recognition in selectin-induced cell rolling. Biochemistry 41(14):4704–4712, 2002.

    Article  PubMed  CAS  Google Scholar 

  6. Barthel, S. R., A. Antonopoulos, F. Cedeno-Laurent, L. Schaffer, G. Hernandez, S. A. Patil, S. J. North, A. Dell, K. L. Matta, S. Neelamegham, S. M. Haslam, and C. J. Dimitroff. Peracetylated 4-fluoro-glucosamine reduces the content and repertoire of N- and O-glycans without direct incorporation. J. Biol. Chem. 286(24):21717–21731, 2011.

    Article  PubMed  CAS  Google Scholar 

  7. Barthel, S. R., J. D. Gavino, L. Descheny, and C. J. Dimitroff. Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin. Ther. Targets 11(11):1473–1491, 2007.

    Article  PubMed  CAS  Google Scholar 

  8. Barthel, S. R., J. D. Gavino, G. K. Wiese, J. M. Jaynes, J. Siddiqui, and C. J. Dimitroff. Analysis of glycosyltransferase expression in metastatic prostate cancer cells capable of rolling activity on microvascular endothelial (E)-selectin. Glycobiology 18(10):807–816, 2008.

    Article  Google Scholar 

  9. Boscher, C., J. W. Dennis, and I. R. Nabi. Glycosylation, galectins and cellular signaling. Curr. Opin Cell Biol. 23(4):383–392, 2011.

    Article  PubMed  CAS  Google Scholar 

  10. Brewer, C. F., M. C. Miceli, and L. G. Baum. Clusters, bundles, arrays and lattices: novel mechanisms for lectin–saccharide-mediated cellular interactions. Curr. Opin. Struct. Biol. 12(5):616–623, 2002.

    Article  PubMed  CAS  Google Scholar 

  11. Bucior, I., and M. M. Burger. Carbohydrate–carbohydrate interactions in cell recognition. Curr. Opin. Struct. Biol. 14(5):631–637, 2004.

    Article  PubMed  CAS  Google Scholar 

  12. Campbell, C. T., U. Aich, C. A. Weier, J. J. Wang, S. S. Choi, M. M. Wen, K. Maisel, S.-G. Sampathkumar, and K. J. Yarema. Targeting pro-invasive oncogenes with short chain fatty acid-hexosamine analogues inhibits the mobility of metastatic MDA-MB-231 breast cancer cells. J. Med. Chem. 51(24):8135–8147, 2008.

    Article  PubMed  CAS  Google Scholar 

  13. Campbell, C. T., S.-G. Sampathkumar, C. Weier, and K. J. Yarema. Metabolic oligosaccharide engineering: perspectives, applications, and future directions. Mol. Biosyst. 3(3):187–194, 2007.

    Article  PubMed  CAS  Google Scholar 

  14. Carlow, D. A., G. Kaus, S. Naus, K. M. Veerman, W. Seo, and H. J. Ziltener. PSGL-1 function in immunity and steady state homeostasis. Immunol. Rev. 230(1):75–96, 2009.

    Article  PubMed  CAS  Google Scholar 

  15. Cha, S.-K., B. Ortega, H. Kurosu, K. P. Rosenblatt, M. Kuro-o, and C.-L. Huang. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc. Natl. Acad. Sci. USA 105(28):9805–9810, 2008.

    Article  PubMed  CAS  Google Scholar 

  16. Chefalo, P., Y. Pan, N. Nagy, Z. Guo, and C. V. Harding. Efficient metabolic engineering of GM3 on tumor cells by N-phenylacetyl-D-mannosamine. Biochemistry 45(11):3733–3739, 2006.

    Article  PubMed  CAS  Google Scholar 

  17. Dafik, L., M. d’Alarcao, and K. Kumar. Fluorination of mammalian cell surfaces via the sialic acid biosynthetic pathway. Bioorg. Med. Chem. Lett. 18(22):5945–5947, 2008.

    Article  PubMed  CAS  Google Scholar 

  18. Dafik, L., M. d’Alarcao, and K. Kumar. Modulation of cellular adhesion by glycoengineering. J. Med. Chem. 53(10):4277–4284, 2010.

    Article  PubMed  CAS  Google Scholar 

  19. de la Fuente, J. M., and S. Penadés. Understanding carbohydrate–carbohydrate interactions by means of glyconanotechnology. Glycoconjug. J. 21(3–4):149–163, 2004.

    Article  Google Scholar 

  20. Demetriou, M., M. Granovsky, S. Quaggin, and J. W. Dennis. Negative regulation of T-cell activation and autoimmunity by Mgat5N-glycosylation. Nature 409(6821):733–739, 2001.

    Article  PubMed  CAS  Google Scholar 

  21. Dennis, J. W., I. R. Nabi, and M. Demetriou. Metabolism, cell surface organization, and disease. Cell 139(7):1229–1241, 2009.

    Article  PubMed  Google Scholar 

  22. Descheny, L., M. E. Gainers, B. Walcheck, and C. J. Dimitroff. Ameliorating skin-homing receptors on malignant T cells with a fluorosugar analog of N-acetylglucosamine: P-selectin ligand is a more sensitive target than E-selectin ligand. J. Investig. Dermatol. 126(9):2065–2073, 2006.

    Article  PubMed  CAS  Google Scholar 

  23. Du, J., M. A. Meledeo, Z. Wang, H. S. Khanna, V. D. P. Paruchuri, and K. J. Yarema. Metabolic glycoengineering: sialic acid and beyond. Glycobiology 19(12):1382–1401, 2009.

    Article  PubMed  CAS  Google Scholar 

  24. Dube, D. H., J. A. Prescher, C. N. Quang, and C. R. Bertozzi. Probing mucin-type O-linked glycosylation in living animals. Proc. Natl. Acad. Sci. USA 103(13):4819–4824, 2006.

    Article  PubMed  CAS  Google Scholar 

  25. Elmouelhi, N., U. Aich, V. D. P. Paruchuri, M. A. Meledeo, C. T. Campbell, J. J. Wang, R. Srinivas, H. S. Khanna, and K. J. Yarema. Hexosamine template. A platform for modulating gene expression and for sugar-based drug discovery. J. Med. Chem. 52(8):2515–2530, 2009.

    Article  PubMed  CAS  Google Scholar 

  26. Fang, Y., J. Wu, R. P. McEver, and C. Zhu. Bending rigidities of cell surface molecules P-selectin and PSGL-1. J. Biomech. 42(3):303–307, 2009.

    Article  PubMed  Google Scholar 

  27. Ferrara, C., S. Grau, C. Jäger, P. Sondermann, P. Brünker, I. Waldhauer, M. Hennig, A. Ruf, A. C. Rufer, M. Stihle, P. Umaña, and J. Benz. Unique carbohydrate–carbohydrate interactions are required for high affinity binding between FcgRIII and antibodies lacking core fucose. Proc. Natl Acad. Sci. USA. doi:10.1073/pnas.1108455108, 2011. [Epub ahead of print]

  28. Gagiannis, D., R. Gossrau, W. Reutter, M. Zimmermann-Kordmann, and R. Horstkorte. Engineering the sialic acid in organs of mice using N-propanoylmannosamine. Biochim. Biophys. Acta 1770(2):297–306, 2007.

    Article  PubMed  CAS  Google Scholar 

  29. Gainers, M. E., L. Descheny, S. R. Barthel, L. Liu, M.-A. Wurbel, and C. J. Dimitroff. Skin-homing receptors on effector leukocytes are differentially sensitive to glyco-metabolic antagonism in allergic contact dermatitis. J. Immunol. 179(12):8509–8518, 2007.

    PubMed  CAS  Google Scholar 

  30. Gross, H. J., and R. Brossmer. Enzymatic introduction of a fluorescent sialic acid into oligosaccharide chains of glycoproteins. Eur. J. Biochem. 177(3):583–589, 1988.

    Article  PubMed  CAS  Google Scholar 

  31. Gross, H. J., U. Rose, J. M. Krause, J. C. Paulson, K. Schmid, R. E. Feeny, and R. Brossmer. Transfer of synthetic sialic acid analogues to N- and O-linked glycoprotein glycans using four different mammalian sialyltransferases. Biochemistry 28(18):7386–7392, 1989.

    Article  PubMed  CAS  Google Scholar 

  32. Hadfield, A. F., S. L. Mella, and A. C. Sartorelli. N-acetyl-D-mannosamine analogues as potential inhibitors of sialic acid biosynthesis. J. Pharm. Sci. 72(7):748–751, 1983.

    Article  PubMed  CAS  Google Scholar 

  33. Hakomori, S.-I. The glycosynapse. Proc. Natl. Acad. Sci. USA 99(1):225–232, 2002.

    Article  CAS  Google Scholar 

  34. Hakomori, S. Carbohydrate-to-carbohydrate interaction, through glycosynapse, as a basis of cell recognition and membrane organization. Glycoconjug. J. 21(3–4):125–137, 2004.

    Article  CAS  Google Scholar 

  35. Han, S., B. E. Collins, P. Bengtson, and J. C. Paulson. Homo-multimeric complexes of CD22 revealed by in situ photoaffinity protein-glycan crosslinking. Nat. Chem. Biol. 1(2):93–97, 2005.

    Article  PubMed  CAS  Google Scholar 

  36. Hanley, W. D., S. L. Napier, M. M. Burdick, R. L. Schnaar, R. Sackstein, and K. Konstantopoulos. Variant isoforms of CD44 are P- and L-selectin ligands on colon carcinoma cells. FASEB J. 20(2):337–339, 2006.

    PubMed  CAS  Google Scholar 

  37. Hsu, T.-L., S. R. Hanson, K. Kishikawa, S.-K. Wang, M. Sawa, and C.-H. Wong. Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells. Proc. Natl. Acad. Sci. USA 104(8):2614–2619, 2007.

    Article  PubMed  CAS  Google Scholar 

  38. Ishada, T. Computational modeling of carbohydrate-recognition process in E-selectin complex: structural mapping of sialyl Lewis X onto Ab Initio QM/MM free energy surface. J. Phys. Chem. B 114(11):3950–3964, 2010.

    Article  Google Scholar 

  39. Jacobs, C. L., S. Goon, K. J. Yarema, S. Hinderlich, H. C. Hang, D. H. Chai, and C. R. Bertozzi. Substrate specificity of the sialic acid biosynthetic pathway. Biochemistry 40:12864–12874, 2001.

    Article  PubMed  CAS  Google Scholar 

  40. Kayser, H., R. Zeitler, C. Kannicht, D. Grunow, R. Nuck, and W. Reutter. Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-D-hexosamines as precursors. J. Biol. Chem. 267(24):16934–16938, 1992.

    PubMed  CAS  Google Scholar 

  41. Keppler, O. T., R. Horstkorte, M. Pawlita, C. Schmidt, and W. Reutter. Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology 11(2):11R–18R, 2001.

    Article  PubMed  CAS  Google Scholar 

  42. Kim, E. J., S.-G. Sampathkumar, M. B. Jones, J. K. Rhee, G. Baskaran, and K. J. Yarema. Characterization of the metabolic flux and apoptotic effects of O-hydroxyl- and N-acetylmannosamine (ManNAc) analogs in Jurkat (human T-lymphoma-derived) cells. J. Biol. Chem 279(18):18342–18352, 2004.

    Article  PubMed  CAS  Google Scholar 

  43. Klemm, W. R. Biological water and its role in the effects of alcohol. Alcohol 15(3):249–267, 1998.

    Article  PubMed  CAS  Google Scholar 

  44. Klemm, W. R., R. Boyles, J. Mathew, and L. Cherian. Gangliosides, or sialic acid, antagonize ethanol intoxication. Life Sci. 43(22):1837–1843, 1988.

    Article  PubMed  CAS  Google Scholar 

  45. Kontou, M., C. Bauer, W. Reutter, and R. Horstkorte. Sialic acid metabolism is involved in the regulation of gene expression during neuronal differentiation of PC12 cells. Glycoconjug. J. 25(3):237–244, 2008.

    Article  CAS  Google Scholar 

  46. Lanza, F., L. Healy, and D. R. Sutherland. Structural and functional features of the CD34 antigen: an update. J. Biol. Regul. Homeost. Agents 15(1):1–13, 2001.

    PubMed  CAS  Google Scholar 

  47. Lau, K. S., and J. W. Dennis. N-Glycans in cancer progression. Glycobiology. 18(10):750–760, 2008.

    Article  PubMed  CAS  Google Scholar 

  48. Lemieux, G. A., K. J. Yarema, C. L. Jacobs, and C. R. Bertozzi. Exploiting differences in sialoside expression for selective targeting of MRI contrast reagents. J. Am. Chem. Soc. 121(17):4278–4279, 1999.

    Article  CAS  Google Scholar 

  49. Luchansky, S. J., K. J. Yarema, S. Takahashi, and C. R. Bertozzi. GlcNAc 2-epimerase can serve a catabolic role in sialic acid metabolism. J. Biol. Chem. 278(10):8036–8042, 2003.

    Article  Google Scholar 

  50. Mahal, L. K., K. J. Yarema, and C. R. Bertozzi. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276(5315):1125–1128, 1997.

    Article  PubMed  CAS  Google Scholar 

  51. Marathe, D. D., A. Buffone, Jr., E. V. Chandrasekaran, J. Xue, R. D. Locke, M. Nasirikenari, J. T. Y. Lau, K. L. Matta, and S. Neelamegham. Fluorinated per-acetylated GalNAc metabolically alters glycan structures on leukocyte PSGL-1 and reduces cell binding to selectins. Blood 115(6):1303–1312, 2010.

    Article  PubMed  CAS  Google Scholar 

  52. McEver, R. P., and C. Zhu. Rolling cell adhesion. Annu. Rev. Cell Dev. Biol. 26:363–396, 2010.

    Article  PubMed  CAS  Google Scholar 

  53. Müthing, J., U. Maurer, and S. Weber-Schürholz. Glycosphingolipids of skeletal muscle: II. Modulation of Ca2+-flux in triad membranes by gangliosides. Carbohydr. Res. 307(1–2):147–157, 1998.

    Article  PubMed  Google Scholar 

  54. Nauman, D. A., and C. R. Bertozzi. Kinetic parameters for small-molecule drug delivery by covalent cell surface targeting. Biochim. Biophys. Acta 1568(2):147–154, 2001.

    Article  PubMed  CAS  Google Scholar 

  55. Nigro, J., A. Wang, D. Mukhopadhyay, M. Lauer, R. J. Midura, R. Sackstein, and V. C. Hascall. Regulation of heparan sulfate and chondroitin sulfate glycosaminoglycan biosynthesis by 4-fluoro-glucosamine in murine airway smooth muscle cells. J. Biol. Chem. 284(25):16832–16839, 2009.

    Article  PubMed  CAS  Google Scholar 

  56. Oetke, C., R. Brossmer, L. R. Mantey, S. Hinderlich, R. Isecke, W. Reutter, O. T. Keppler, and M. Pawlita. Versatile biosynthetic engineering of sialic acid in living cells using synthetic sialic acid analogues. J. Biol. Chem. 277(8):6688–6695, 2002.

    Article  PubMed  CAS  Google Scholar 

  57. Puri, K. D., S. Chen, and T. A. Springer. Modifying the mechanical property of and shear threshold of L-selectin adhesion independently of equilibrium properties. Nature 392(6679):930–933, 1998.

    Article  PubMed  CAS  Google Scholar 

  58. Sampathkumar, S.-G., M. B. Jones, M. A. Meledeo, C. T. Campbell, S. S. Choi, K. Hida, P. Gomutputra, A. Sheh, T. Gilmartin, S. R. Head, and K. J. Yarema. Targeting glycosylation pathways and the cell cycle: sugar-dependent activity of butyrate-carbohydrate cancer prodrugs. Chem. Biol. 13(12):1265–1275, 2006.

    Article  PubMed  CAS  Google Scholar 

  59. Sampathkumar, S.-G., A. V. Li, M. B. Jones, Z. Sun, and K. J. Yarema. Metabolic installation of thiols into sialic acid modulates adhesion and stem cell biology. Nat. Chem. Biol. 2(3):149–152, 2006.

    Article  PubMed  CAS  Google Scholar 

  60. Sawa, M., T.-L. Hsu, T. Itoh, M. Sugiyama, S. R. Hanson, P. K. Vogt, and C.-H. Wong. Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc. Natl. Acad. Sci. USA 103(33):12371–12376, 2006.

    Article  PubMed  CAS  Google Scholar 

  61. Saxon, E., and C. R. Bertozzi. Cell surface engineering by a modified Staudinger reaction. Science 287(5460):2007–2010, 2000.

    Article  PubMed  CAS  Google Scholar 

  62. Schmidt, C., P. Stehling, J. Schnitzer, W. Reutter, and R. Horstkorte. Biochemical engineering of neural cell surfaces by the synthetic N-propanoyl-substituted neuraminic acid precursor. J. Biol. Chem. 273(30):19146–19152, 1998.

    Article  PubMed  CAS  Google Scholar 

  63. Schneck, E., B. Demé, C. Gege, and M. Tanaka. Membrane adhesion via homophilic saccharide–saccharide interactions investigated by neutron scattering. Biophys. J. 100(9):2151–2159, 2011.

    Article  PubMed  CAS  Google Scholar 

  64. Schumacher, G., U. Bakowsky, C. Gege, R. R. Schmidt, U. Rothe, and G. Bendas. Lessons learned from clustering of fluorinated glycolipids on selectin ligand function in cell rolling. Biochemistry 45(9):2894–2903, 2006.

    Article  PubMed  CAS  Google Scholar 

  65. Schwartz, E. L., A. F. Hadfield, A. E. Brown, and A. C. Sartorelli. Modification of sialic acid metabolism of murine erythroleukemia cells by analogs of N-acetylmannosamine. Biochim. Biophys. Acta 762(4):489–497, 1983.

    Article  PubMed  CAS  Google Scholar 

  66. Somers, W. S., J. Tang, G. D. Shaw, and R. T. Camphausen. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to sLeX and PSGL-1. Cell 103(3):467–479, 2000.

    Article  PubMed  CAS  Google Scholar 

  67. Tanaka, Y., and J. J. Kohler. Photoactivatable crosslinking sugars for capturing glycoprotein interactions. J. Am. Chem. Soc 130(11):3278–3279, 2008.

    Article  PubMed  CAS  Google Scholar 

  68. Viswanathan, K., S. Lawrence, S. Hinderlich, K. J. Yarema, Y. C. Lee, and M. Betenbaugh. Engineering sialic acid synthetic ability into insect cells: identifying metabolic bottlenecks and devising strategies to overcome them. Biochemistry 42(51):15215–15225, 2003.

    Article  PubMed  CAS  Google Scholar 

  69. Vocadlo, D. J., H. C. Hang, E.-J. Kim, J. A. Hanover, and C. R. Bertozzi. A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc. Natl. Acad. Sci. USA 100(16):9116–9121, 2003.

    Article  PubMed  CAS  Google Scholar 

  70. Voynov, V., N. Chennamsetty, V. Kayser, B. Helk, K. Forrer, H. Zhang, C. Fritsch, H. Heine, and B. L. Trout. Dynamic fluctuations of protein–carbohydrate interactions promote protein aggregation. PLoS ONE 4(12):e8425, 2009.

    Article  PubMed  Google Scholar 

  71. Wang, Z., J. Du, P.-L. Che, M. A. Meledeo, and K. J. Yarema. Hexosamine analogs: from metabolic glycoengineering to drug discovery. Curr. Opin. Chem. Biol. 13(5–6):565–572, 2009.

    Article  PubMed  CAS  Google Scholar 

  72. Wang, Y., Z. Tsui, and F. Yang. Antagonistic effect of ganglioside GM1 and GM3 on the activity and conformation of sarcoplasmic reticulum Ca2+-ATPase. FEBS Lett. 457(1):144–148, 1999.

    Article  PubMed  CAS  Google Scholar 

  73. Yarema, K. J., and C. R. Bertozzi. Chemical approaches to glycobiology and emerging carbohydrate-based therapeutic agents. Curr. Opin. Chem. Biol. 2(1):49–61, 1998.

    Article  PubMed  CAS  Google Scholar 

  74. Yarema, K. J., L. K. Mahal, R. E. Bruehl, E. C. Rodriguez, and C. R. Bertozzi. Metabolic delivery of ketone groups to sialic acid residues. Application to cell surface glycoform engineering. J. Biol. Chem. 273(47):31168–31179, 1998.

    Article  PubMed  CAS  Google Scholar 

  75. Zachara, N. E., and G. W. Hart. The emerging significance of O-GlcNAc in cellular regulation. Chem. Rev. 102(2):431–438, 2002.

    Article  PubMed  CAS  Google Scholar 

  76. Zhang, X., D. F. Bogorin, and V. T. Moy. Molecular basis of the dynamic strength of the sialyl Lewis X–selectin interaction. ChemPhysChem 5(2):175–182, 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for the authors was provided by the NCI grants R01CA112314 (E.T. and M.P.M.) and R01CA101135 (R.T.A) and the NIBIB grant R01EB005692 and NCI grant 1U54CA143868 (K.J.Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Yarema.

Additional information

Associate Editor Sriram Neelamegham oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almaraz, R.T., Mathew, M.P., Tan, E. et al. Metabolic Oligosaccharide Engineering: Implications for Selectin-Mediated Adhesion and Leukocyte Extravasation. Ann Biomed Eng 40, 806–815 (2012). https://doi.org/10.1007/s10439-011-0450-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0450-y

Keywords

Navigation