Annals of Biomedical Engineering

, Volume 40, Issue 2, pp 422–437 | Cite as

Biomedical Applications of Photoacoustic Imaging with Exogenous Contrast Agents

  • Geoffrey P. Luke
  • Doug Yeager
  • Stanislav Y. Emelianov


Photoacoustic imaging is a biomedical imaging modality that provides functional information, and, with the help of exogenous contrast agents, cellular and molecular signatures of tissue. In this article, we review the biomedical applications of photoacoustic imaging assisted with exogenous contrast agents. Dyes, noble metal nanoparticles, and other constructs are contrast agents which absorb strongly in the near-infrared band of the optical spectrum and generate strong photoacoustic response. These contrast agents, which can be specifically targeted to molecules or cells, have been coupled with photoacoustic imaging for preclinical and clinical applications ranging from detection of cancer cells, sentinel lymph nodes, and micrometastasis to angiogenesis to characterization of atherosclerotic plaques. Multi-functional agents have also been developed, which can carry drugs or simultaneously provide contrast in multiple imaging modalities. Furthermore, contrast agents were used to guide and monitor the therapeutic procedures. Overall, photoacoustic imaging shows significant promise in its ability to assist in diagnosis, therapy planning, and monitoring of treatment outcome for cancer, cardiovascular disease, and other pathologies.


Photoacoustic imaging Contrast agent Nanoparticle Dye Cancer Atherosclerosis Therapy Monitoring Theranostics Molecular imaging 


Conflicts of interest

The authors have no conflicts of interest to declare.


  1. 1.
    Agarwal, A., S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys. 102(6):064701–064704, 2007.Google Scholar
  2. 2.
    Agarwal, A., X. Shao, J. R. Rajian, H. Zhang, D. L. Chamberland, N. A. Kotov, and X. Wang. Dual-mode imaging with radiolabeled gold nanorods. J. Biomed. Opt. 16:051307, 2011.PubMedGoogle Scholar
  3. 3.
    Altınoglu, E. I., T. J. Russin, J. M. Kaiser, B. M. Barth, P. C. Eklund, M. Kester, and J. H. Adair. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano. 2(10):2075–2084, 2008.PubMedGoogle Scholar
  4. 4.
    Bayer, C. L., Y.-S. Chen, S. Kim, S. Mallidi, K. Sokolov, and S. Emelianov. Multiplex photoacoustic molecular imaging using targeted silica-coated gold nanorods. Biomed. Opt Express 2(7):1828–1835, 2011.PubMedGoogle Scholar
  5. 5.
    Bhattacharyya, S., S. Wang, D. Reinecke, W. Kiser, R. A. Kruger, and T. R. DeGrado. Synthesis and evaluation of near-infrared (nir) dye-herceptin conjugates as photoacoustic computed tomography (PCT) probes for her2 expression in breast cancer. Bioconj. Chem. 19(6):1186–1193, 2008.Google Scholar
  6. 6.
    Bouchard, L.-S., M. S. Anwar, G. L. Liu, B. Hann, Z. H. Xie, J. W. Gray, X. Wang, A. Pines, and F. F. Chen. Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles. Proc. Natl Acad. Sci. USA 106(11):4085–4089, 2009.PubMedGoogle Scholar
  7. 7.
    Buehler, A., E. Herzog, D. Razansky, and V. Ntziachristos. Video rate optoacoustic tomography of mouse kidney perfusion. Opt. Lett. 35(14):2475–2477, 2011.Google Scholar
  8. 8.
    Chang, S.-S., C.-W. Shih, C.-D. Chen, W.-C. Lai, and C. R. C. Wang. The shape transition of gold nanorods. Langmuir 15(3):701–709, 1999.Google Scholar
  9. 9.
    Chen, Y.-S., W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emelianov. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt. Express 18(9):8867–8878, 2011.Google Scholar
  10. 10.
    Chen, Y.-S., W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett. 11(2):348–354, 2010.Google Scholar
  11. 11.
    Cheng, Y., A. C. Samia, J. D. Meyers, I. Panagopoulos, B. Fei, and C. Burda. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J. Am. Chem. Soc. 130(32):10643–10647, 2008.PubMedGoogle Scholar
  12. 12.
    Cole, J. R., N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas. Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications. J. Phys. Chem. C 113(28):12090–12094, 2009.Google Scholar
  13. 13.
    Davies, M. J., J. L. Gordon, A. J. H. Gearing, R. Pigott, N. Woolf, D. Katz, and A. Kyriakopoulos. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E- selectin in human atherosclerosis. J. Pathol. 171(3):223–229, 1993.PubMedGoogle Scholar
  14. 14.
    De La Zerda, A., C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 3(9):557–562, 2008.Google Scholar
  15. 15.
    Esenaliev, R. O., A. A. Karabutov, and A. A. Oraevsky. Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors. IEEE J. Sel. Top. Quantum Electron. 5(4):981–988, 1999.Google Scholar
  16. 16.
    Galanzha, E., E. Shashkov, P. Spring, J. Suen, and V. Zharov. In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Res. 69(20):7926–7934, 2009.PubMedGoogle Scholar
  17. 17.
    Galanzha, E. I., E. V. Shashkov, V. V. Tuchin, and V. P. Zharov. In vivo multispectral, multiparameter, photoacoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes. Cytom. A 73A(10):884–894, 2008.Google Scholar
  18. 18.
    Gershenwald, J. E., W. Thompson, P. F. Mansfield, J. E. Lee, M. I. Colome, C.-H. Tseng, J. J. Lee, C. M. Balch, D. S. Reintgen, and M. I. Ross. Multi-institutional melanoma lymphatic mapping experience: the prognostic value of sentinel lymph node status in 612 stage I or II melanoma patients. J. Clin. Oncol. 17(3):976, 1999.PubMedGoogle Scholar
  19. 19.
    Graf, I. M., J. Su, D. Yeager, J. Amirian, R. Smalling, and S. Emelianov. Methodical study on plaque characterization using integrated vascular ultrasound, strain and spectroscopic photoacoustic imaging. SPIE Proc. 7899:789902, 2011Google Scholar
  20. 20.
    Green, D. E., J. P. Longtin, and B. Sitharaman. The effect of nanoparticle-enhanced photoacoustic stimulation on multipotent marrow stromal cells. ACS Nano. 3(8):2065–2072, 2009.PubMedGoogle Scholar
  21. 21.
    Grzelczak, M., J. Perez-Juste, P. Mulvaney, and L. M. Liz-Marzan. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37(9):1783–1791, 2008.PubMedGoogle Scholar
  22. 22.
    Ha, S., A. Carson, A. Agarwal, N. A. Kotov, and K. Kim. Detection and monitoring of the multiple inflammatory responses by photoacoustic molecular imaging using selectively targeted gold nanorods. Biomed Opt. Express 2(3):645–657, 2011.PubMedGoogle Scholar
  23. 23.
    Harrison, T., and R. J. Zemp. Coregistered photoacoustic-ultrasound imaging applied to brachytherapy. J. Biomed. Opt. 16:080502, 2011.PubMedGoogle Scholar
  24. 24.
    Höckel, M., and P. Vaupel. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl Cancer Inst. 93(4):266–276, 2001.PubMedGoogle Scholar
  25. 25.
    Homan, K., S. Kim, Y.-S. Chen, B. Wang, S. Mallidi, and S. Emelianov. Prospects of molecular photoacoustic imaging at 1064 nm wavelength. Opt. Lett. 35(15):2663–2665, 2010.PubMedGoogle Scholar
  26. 26.
    Homan, K., S. Mallidi, E. Cooley, and S. Emelianov. Combined photoacoustic and ultrasound imaging of metal nanoparticles in vivo. In: Nanoimaging, edited by B. A. Goins, and W. T. Phillips. Singapore: Pan Stanford Publishing, 2011.Google Scholar
  27. 27.
    Homan, K., J. Shah, S. Gomez, H. Gensler, A. Karpiouk, L. Brannon-Peppas, and S. Emelianov. Silver nanosystems for photoacoustic imaging and image-guided therapy. J. Biomed. Opt. 15:021316, 2010.PubMedGoogle Scholar
  28. 28.
    Hoshiga, M., C. E. Alpers, L. L. Smith, C. M. Giachelli, and S. M. Schwartz. Alpha-v beta-3 integrin expression in normal and atherosclerotic artery. Circ. Res. 77(6):1129–1135, 1995.PubMedGoogle Scholar
  29. 29.
    Hsieh, B.-Y., S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li. Integrated intravascular ultrasound and photoacoustic imaging scan head. Opt. Lett. 35(17):2892–2894, 2010.PubMedGoogle Scholar
  30. 30.
    Hu, S., K. Maslov, V. Tsytsarev, and L. V. Wang. Functional transcranial brain imaging by optical-resolution photoacoustic microscopy. J. Biomed. Opt. 14:040503, 2009.PubMedGoogle Scholar
  31. 31.
    Hu, S., and L. V. Wang. Photoacoustic imaging and characterization of the microvasculature. J. Biomed. Opt. 15(1):011101–011115, 2010.PubMedGoogle Scholar
  32. 32.
    Huang, H.-C., S. Barua, G. Sharma, S. K. Dey, and K. Rege. Inorganic nanoparticles for cancer imaging and therapy. J. Control. Rel. 155(3):344–357, 2011.Google Scholar
  33. 33.
    Jain, P. K., K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110(14):7238–7248, 2006.PubMedGoogle Scholar
  34. 34.
    Jansen, K., A. F. W. van der Steen, H. M. M. van Beusekom, J. W. Oosterhuis, and G. van Soest. Intravascular photoacoustic imaging of human coronary atherosclerosis. Opt. Lett. 36(5):597–599, 2011.PubMedGoogle Scholar
  35. 35.
    Jia, C., J. Xia, I. M. Pelivanov, C. H. Seo, X. Hu, Y. Jin, X. Gao, and M. O’Donnell. Dynamic manipulation of magnetic contrast agents in photoacoustic imaging. Proc. SPIE 7899:78991R, 2011.Google Scholar
  36. 36.
    Jin, Y., C. Jia, S.-W. Huang, M. O’Donnell, and X. Gao. Multifunctional nanoparticles as coupled contrast agents. Nat. Commun. 1:41, 2010.PubMedGoogle Scholar
  37. 37.
    Karpiouk, A. B., B. Wang, and S. Y. Emelianov. Development of a catheter for combined intravascular ultrasound and photoacoustic imaging. Rev. Sci. Instrum. 81(1):014901, 2010.PubMedGoogle Scholar
  38. 38.
    Kennedy, L. C., L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183, 2011.PubMedGoogle Scholar
  39. 39.
    Kim, S., Y.-S. Chen, G. P. Luke, and S. Y. Emelianov. In vivo three-dimensional spectroscopic photoacoustic imaging for monitoring nanoparticle delivery. Biomed. Opt. Express 2:2540–2550, 2011.PubMedGoogle Scholar
  40. 40.
    Kim, S., Y.-S. Chen, G. P. Luke, M. Mehrmohammadi, J. R. Cook, and S. Y. Emelianov. Ultrasound and photoacoustic image-guided photothermal therapy using silica-coated gold nanorods: in vivo study. IEEE Ultrasonics Symposium (IUS), San Diego, 2010, pp. 233–236.Google Scholar
  41. 41.
    Kim, C., E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang. In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano. 4(8):4559–4564, 2010.PubMedGoogle Scholar
  42. 42.
    Kim, J.-W., E. I. Galanzha, E. V. Shashkov, H.-M. Moon, and V. P. Zharov. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat. Nanotechnol. 4(10):688–694, 2009.PubMedGoogle Scholar
  43. 43.
    Kim, K., S.-W. Huang, S. Ashkenazi, M. O’Donnell, A. Agarwal, N. A. Kotov, M. F. Denny, and M. J. Kaplan. Photoacoustic imaging of early inflammatory response using gold nanorods. Appl. Phys. Lett. 90(22):223901, 2007.Google Scholar
  44. 44.
    Kim, G., S.-W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi. Indocyanine-green-embedded pebbles as a contrast agent for photoacoustic imaging. J. Biomed. Opt. 12(4):044020–044028, 2007.PubMedGoogle Scholar
  45. 45.
    Kim, C., R. Qin, J. S. Xu, L. V. Wang, and R. Xu. Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging. J. Biomed. Opt. 15:010510, 2010.PubMedGoogle Scholar
  46. 46.
    Krag, D. N., D. L. Weaver, J. C. Alex, and J. T. Fairbank. Surgical resection and radiolocalization of the sentinel lymph node in breast cancer using a gamma probe. Surg. Oncol. 2(6):335–340, 1993.PubMedGoogle Scholar
  47. 47.
    Ku, G., and L. V. Wang. Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Opt. Lett. 30(5):507–509, 2005.PubMedGoogle Scholar
  48. 48.
    Lao, Y., et al. Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth. Phys. Med. Biol. 53(15):4203, 2008.PubMedGoogle Scholar
  49. 49.
    Laser Institute of America. American National Standard for Safe Use of Lasers ANSI Z136.1–2000. New York: American National Standards Institute, Inc., 2000.Google Scholar
  50. 50.
    Laufer, J., E. Zhang, and P. Beard. Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging. IEEE J. Sel. Top. Quantum Electron. 16(3):600–607, 2010.Google Scholar
  51. 51.
    Levi, J., S. R. Kothapalli, T.-J. Ma, K. Hartman, B. T. Khuri-Yakub, and S. S. Gambhir. Design, synthesis, and imaging of an activatable photoacoustic probe. J. Am. Chem. Soc. 132(32):11264–11269, 2010.PubMedGoogle Scholar
  52. 52.
    Lewinski, N., V. Colvin, and R. Drezek. Cytotoxicity of nanoparticles. Small 4(1):26–49, 2008.PubMedGoogle Scholar
  53. 53.
    Li, P.-C., C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh. Multiple targeting in photoacoustic imaging using bioconjugated gold nanorods. Proc. SPIE 6086:60860M, 2006.Google Scholar
  54. 54.
    Li, M.-L., J.-T. Oh, X. Xie, K. Geng, W. Wang, C. Li, L. Gina, G. Stoica, and L. V. Wang. Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography. Proc. IEEE 96(3):481–489, 2008.Google Scholar
  55. 55.
    Li, M.-L., J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang. In vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. J. Biomed. Opt. 14(1):010507, 2009.PubMedGoogle Scholar
  56. 56.
    Lindvall, O., Z. Kokaia, and A. Martinez-Serrano. Stem cell therapy for human neurodegenerative disorders—how to make it work. Nat. Med. 10:S42–S50, 2004.PubMedGoogle Scholar
  57. 57.
    Liu, Z., K. Chen, C. Davis, S. Sherlock, Q. Cao, X. Chen, and H. Dai. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 68(16):6652–6660, 2008.PubMedGoogle Scholar
  58. 58.
    Liu, Z., X. Sun, N. Nakayama-Ratchford, and H. Dai. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano. 1(1):50–56, 2007.PubMedGoogle Scholar
  59. 59.
    Longmire, M., P. L. Choyke, and H. Kobayashi. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3(5):703–717, 2008.PubMedGoogle Scholar
  60. 60.
    Lu, W., Q. Huang, G. Ku, X. Wen, M. Zhou, D. Guzatov, P. Brecht, R. Su, A. Oraevsky, L. V. Wang, and C. Li. Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials 31(9):2617–2626, 2010.PubMedGoogle Scholar
  61. 61.
    Ma, L. L., M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston. Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy. ACS Nano. 3(9):2686–2696, 2009.PubMedGoogle Scholar
  62. 62.
    Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41:189–207, 2001.PubMedGoogle Scholar
  63. 63.
    Malam, Y., M. Loizidou, and A. M. Seifalian. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci. 30(11):592–599, 2009.PubMedGoogle Scholar
  64. 64.
    Mallidi, S., T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov. Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett. 9(8):2825–2831, 2009.PubMedGoogle Scholar
  65. 65.
    Mallidi, S., G. P. Luke, and S. Emelianov. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 29(5):213–221, 2011.PubMedGoogle Scholar
  66. 66.
    Maslov, K., H. F. Zhang, S. Hu, and L. V. Wang. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt. Lett. 33(9):929–931, 2008.PubMedGoogle Scholar
  67. 67.
    Millstone, J. E., S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin. Colloidal gold and silver triangular nanoprisms. Small 5(6):646–664, 2009.PubMedGoogle Scholar
  68. 68.
    Morton, D. L., D.-R. Wen, J. H. Wong, J. S. Economou, L. A. Cagle, F. K. Storm, L. J. Foshag, and A. J. Cochran. Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch. Surg. 127(4):392–399, 1992.PubMedGoogle Scholar
  69. 69.
    Murphy, J. M., D. J. Fink, E. B. Hunziker, and F. P. Barry. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 48(12):3464–3474, 2003.PubMedGoogle Scholar
  70. 70.
    Naghavi, M., P. Libby, E. Falk, S. W. Casscells, S. Litovsky, J. Rumberger, J. J. Badimon, C. Stefanadis, P. Moreno, G. Pasterkamp, Z. Fayad, P. H. Stone, S. Waxman, P. Raggi, M. Madjid, A. Zarrabi, A. Burke, C. Yuan, P. J. Fitzgerald, D. S. Siscovick, C. L. de Korte, M. Aikawa, K. E. Juhani Airaksinen, G. Assmann, C. R. Becker, J. H. Chesebro, A. Farb, Z. S. Galis, C. Jackson, I.-K. Jang, W. Koenig, R. A. Lodder, K. March, J. Demirovic, M. Navab, S. G. Priori, M. D. Rekhter, R. Bahr, S. M. Grundy, R. Mehran, A. Colombo, E. Boerwinkle, C. Ballantyne, W. Insull, R. S. Schwartz, R. Vogel, P. W. Serruys, G. K. Hansson, D. P. Faxon, S. Kaul, H. Drexler, P. Greenland, J. E. Muller, R. Virmani, P. M. Ridker, D. P. Zipes, P. K. Shah, and J. T. Willerson. From vulnerable plaque to vulnerable patient. Circulation 108(14):1664–1672, 2003.PubMedGoogle Scholar
  71. 71.
    Nam, S. Y., S. Mallidi, G. Zhang, L. J. Suggs, and S. Emelianov. Ultrasound and photoacoustic imaging to monitor vascular growth in tissue engineered constructs. Proc. SPIE 7179:71790G, 2009.Google Scholar
  72. 72.
    Nam, S. Y., L. M. Ricles, K. Sokolov, L. J. Suggs, and S. Y. Emelianov. Ultrasound and photoacoustic imaging to monitor mesenchymal stem cells labeled with gold nanoparticles. Proc. SPIE 7899:78991Z, 2011.Google Scholar
  73. 73.
    Nicholson, R. I., J. M. W. Gee, and M. E. Harper. EGFR and cancer prognosis. Eur. J. Cancer 37(Supplement 4):9–15, 2001.Google Scholar
  74. 74.
    Niidome, T., M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Rel. 114(3):343–347, 2006.Google Scholar
  75. 75.
    Nikoobakht, B., and M. A. El-Sayed. Preparation and growth mechanism of gold nanorods (NRS) using seed-mediated growth method. Chem. Mater. 15(10):1957–1962, 2003.Google Scholar
  76. 76.
    O’Donnell, M., E. R. McVeigh, H. W. Strauss, A. Tanaka, B. E. Bouma, G. J. Tearney, M. A. Guttman, and E. V. Garcia. Multimodality cardiovascular molecular imaging technology. J. Nucl. Med. 51(Supplement 1):38S–50S, 2010.PubMedGoogle Scholar
  77. 77.
    Paciotti, G. F., L. Myer, D. Weinreich, D. Goia, N. Pavel, R. E. McLaughlin, and L. Tamarkin. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 11(3):169–183, 2004.PubMedGoogle Scholar
  78. 78.
    Pan, Y., S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent. Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949, 2007.PubMedGoogle Scholar
  79. 79.
    Pan, D., M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza. Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons. FASEB J. 25:875–882, 2010.PubMedGoogle Scholar
  80. 80.
    Pan, D., M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza. Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons. FASEB J. 25(3):875–882, 2011.PubMedGoogle Scholar
  81. 81.
    Pan, D., M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. V. Wang, and G. M. Lanza. Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons. Biomaterials 31(14):4088–4093, 2010.PubMedGoogle Scholar
  82. 82.
    Panchapakesan, B., S. Lu, K. Sivakumar, K. Taker, G. Cesarone, and E. Wickstrom. Single-wall carbon nanotube nanobomb agents for killing breast cancer cells. NanoBioTechnology 1(2):133–139, 2005.Google Scholar
  83. 83.
    Pramanik, M., M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang. Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent. J. Biomed. Opt. 14:034018, 2009.PubMedGoogle Scholar
  84. 84.
    Qu, M., S. Mallidi, M. Mehrmohammadi, R. Truby, K. Homan, P. Joshi, Y.-S. Chen, K. Sokolov, and S. Emelianov. Magneto-photo-acoustic imaging. Biomed. Opt. Express 2(2):385–396, 2011.PubMedGoogle Scholar
  85. 85.
    Razansky, D., N. Harlaar, J. Hillebrands, A. Taruttis, E. Herzog, C. Zeebregts, G. van Dam, and V. Ntziachristos. Multispectral optoacoustic tomography of matrix metalloproteinase activity in vulnerable human carotid plaques. Mol. Imaging Biol. 1–9, 2011.Google Scholar
  86. 86.
    Ricles, L. M., S. Y. Nam, K. Sokolov, S. Y. Emelianov, and L. J. Suggs. Function of mesenchymal stem cells following loading of gold nanotracers. Int. J. Nanomed. 6:407–416, 2011.Google Scholar
  87. 87.
    Sanz, J., and Z. A. Fayad. Imaging of atherosclerotic cardiovascular disease. Nature 451(7181):953–957, 2008.PubMedGoogle Scholar
  88. 88.
    Segers, V. F. M., and R. T. Lee. Stem-cell therapy for cardiac disease. Nature 451(7181):937–942, 2008.PubMedGoogle Scholar
  89. 89.
    Sethuraman, S., S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov. Intravascular photoacoustic imaging using an IVUS imaging catheter. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5):978–986, 2007.PubMedGoogle Scholar
  90. 90.
    Sethuraman, S., J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov. Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques. Opt. Express 16(5):3362–3367, 2008.PubMedGoogle Scholar
  91. 91.
    Shah, J., S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov. Photoacoustic imaging and temperature measurement for photothermal cancer therapy. J. Biomed. Opt. 13:034024, 2008.PubMedGoogle Scholar
  92. 92.
    Sitharaman, B., P. K. Avti, K. Schaefer, Y. Talukdar, and J. P. Longtin. A novel nanoparticle-enhanced photoacoustic stimulus for bone tissue engineering. Tissue Eng. A 17(13–14):1851–1858, 2011.Google Scholar
  93. 93.
    Skrabalak, S. E., J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia. Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 41(12):1587–1595, 2008.PubMedGoogle Scholar
  94. 94.
    Slamon, D. J., W. Godolphin, L. A. Jones, J. A. Holt, S. G. Wong, D. E. Keith, W. J. Levin, S. G. Stuart, J. Udove, A. Ullrich, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244(4905):707–712, 1989.PubMedGoogle Scholar
  95. 95.
    Slamon, D. J., B. Leyland-Jones, S. Shak, H. Fuchs, V. Paton, A. Bajamonde, T. Fleming, W. Eiermann, J. Wolter, M. Pegram, J. Baselga, and L. Norton. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344:783–792, 2001.PubMedGoogle Scholar
  96. 96.
    Sokolov, K., M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 63(9):1999–2004, 2003.PubMedGoogle Scholar
  97. 97.
    Song, K. H., C. Kim, C. M. Cobley, Y. Xia, and L. V. Wang. Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett. 9(1):183–188, 2008.Google Scholar
  98. 98.
    Song, K. H., C. Kim, K. Maslov, and L. V. Wang. Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes. Eur. J. Radiol. 70(2):227–231, 2009.PubMedGoogle Scholar
  99. 99.
    Song, K. H., E. W. Stein, J. A. Margenthaler, and L. V. Wang. Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model. J. Biomed. Opt. 13(5):054033–054036, 2008.PubMedGoogle Scholar
  100. 100.
    Staley, J., P. Grogan, A. K. Samadi, H. Cui, M. S. Cohen, and X. Yang. Growth of melanoma brain tumors monitored by photoacoustic microscopy. J. Biomed. Opt. 15(4):040510–040513, 2010.PubMedGoogle Scholar
  101. 101.
    Stantz, K. M., M. Cao, B. Liu, K. D. Miller, and L. Guo. Molecular imaging of neutropilin-1 receptor using photoacoustic spectroscopy in breast tumors. Proc. SPIE 7564:75641O, 2010.Google Scholar
  102. 102.
    Stoeckli, S. J., H. Steinert, M. Pfaltz, and S. Schmid. Sentinel lymph node evaluation in squamous cell carcinoma of the head and neck. Otolaryngol. Head Neck Surg. 125(3):221–226, 2001.PubMedGoogle Scholar
  103. 103.
    Su, J. L., R. R. Bouchard, A. B. Karpiouk, J. D. Hazle, and S. Y. Emelianov. Photoacoustic imaging of prostate brachytherapy seeds. Biomed. Opt. Express 2(8):2243–2254, 2011.PubMedGoogle Scholar
  104. 104.
    Su, J., A. Karpiouk, B. Wang, and S. Emelianov. Photoacoustic imaging of clinical metal needles in tissue. J. Biomed. Opt. 15:021309, 2010.PubMedGoogle Scholar
  105. 105.
    Su, J. L.-S., B. Wang, and S. Y. Emelianov. Photoacoustic imaging of coronary artery stents. Opt. Express 17(22):19894–19901, 2009.PubMedGoogle Scholar
  106. 106.
    Tam, J. M., A. K. Murthy, D. R. Ingram, R. Nguyen, K. V. Sokolov, and K. P. Johnston. Kinetic assembly of near-IR-active gold nanoclusters using weakly adsorbing polymers to control the size. Langmuir 26(11):8988–8999, 2010.PubMedGoogle Scholar
  107. 107.
    Tam, J. M., J. O. Tam, A. Murthy, D. R. Ingram, L. L. Ma, K. Travis, K. P. Johnston, and K. V. Sokolov. Controlled assembly of biodegradable plasmonic nanoclusters for near-infrared imaging and therapeutic applications. ACS Nano. 4(4):2178–2184, 2010.PubMedGoogle Scholar
  108. 108.
    Veronesi, U., G. Paganelli, V. Galimberti, G. Viale, S. Zurrida, M. Bedoni, A. Costa, C. de Cicco, J. G. Geraghty, A. Luini, V. Sacchini, and P. Veronesi. Sentinel-node biopsy to avoid axillary dissection in breast cancer with clinically negative lymph-nodes. Lancet 349(9069):1864–1867, 1997.PubMedGoogle Scholar
  109. 109.
    Wang, L. V. Multiscale photoacoustic microscopy and computed tomography. Nat. Photonics 3(9):503–509, 2009.PubMedGoogle Scholar
  110. 110.
    Wang, L. V. Photoacoustic Imaging and Spectroscopy (1st ed.). Boca Raton: CRC Press, 2009.Google Scholar
  111. 111.
    Wang, C., J. Chen, T. Talavage, and J. Irudayaraj. Gold nanorod/Fe3O4 nanoparticle “nano-pearl-necklaces” for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angew. Chem. Int. Ed. 48(15):2759–2763, 2009.Google Scholar
  112. 112.
    Wang, B., P. Joshi, V. Sapozhnikova, J. Amirian, S. H. Litovsky, R. Smalling, K. Sokolov, and S. Emelianov. Intravascular photoacoustic imaging of macrophages using molecularly targeted gold nanoparticles. Proc. SPIE 7564:75640A, 2010.Google Scholar
  113. 113.
    Wang, X., G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang. Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent. Opt. Lett. 29(7):730–732, 2004.PubMedGoogle Scholar
  114. 114.
    Wang, B., J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling, and S. Emelianov. Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging. Opt. Express 18(5):4889–4897, 2010.PubMedGoogle Scholar
  115. 115.
    Wang, Y., X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang. Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett. 4(9):1689–1692, 2004.Google Scholar
  116. 116.
    Wang, B., E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov. Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques. Nano Lett. 9(6):2212–2217, 2008.Google Scholar
  117. 117.
    Wei, Q., H.-M. Song, A. P. Leonov, J. A. Hale, D. Oh, Q. K. Ong, K. Ritchie, and A. Wei. Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic cores. J. Am. Chem. Soc. 131(28):9728–9734, 2009.PubMedGoogle Scholar
  118. 118.
    Wilson, K., K. Homan, and S. Emelianov. Synthesis of a dual contrast agent for ultrasound and photoacoustic imaging. Proc. SPIE 7576:75760M, 2010.Google Scholar
  119. 119.
    Wilson, K., K. Homan, and E. Stanislav. Photoacoustic and ultrasound imaging contrast enhancement using a dual contrast agent. Proc. SPIE 7564:75642P, 2010.Google Scholar
  120. 120.
    Xia, Y., Y. Xiong, B. Lim, and S. E. Skrabalak. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48(1):60–103, 2009.Google Scholar
  121. 121.
    Xiang, L., D. Xing, H. Gu, D. Yang, S. Yang, L. Zeng, and W. R. Chen. Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor. J. Biomed. Opt. 12(1):014001, 2007.Google Scholar
  122. 122.
    Xiang, L., D. Xing, H. Gu, D. Yang, L. Zeng, S. Yang. Gold nanoshell-based photoacoustic imaging application in biomedicine. International Symposium on Biophotonics, Nanophotonics and Metamaterials, 2006, pp. 76–79.Google Scholar
  123. 123.
    Xiang, L., Y. Yuan, D. Xing, Z. Ou, S. Yang, and F. Zhou. Photoacoustic molecular imaging with antibody-functionalized single-walled carbon nanotubes for early diagnosis of tumor. J. Biomed. Opt. 14:021008, 2008.Google Scholar
  124. 124.
    Xu, M., and V. W. Lihong. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77(4):041101, 2006.Google Scholar
  125. 125.
    Xu, M., and L. V. Wang. Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction. Phys. Rev. E 67(5):056605, 2003.Google Scholar
  126. 126.
    Yang, X., S. E. Skrabalak, Z.-Y. Li, Y. Xia, and L. V. Wang. Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast contrast agent. Nano Lett. 7(12):3798–3802, 2007.PubMedGoogle Scholar
  127. 127.
    Yang, S., D. Xing, Y. Lao, D. Yang, L. Zeng, L. Xiang, and W. R. Chen. Noninvasive monitoring of traumatic brain injury and post-traumatic rehabilitation with laser-induced photoacoustic imaging. AIP 90:243902, 2007.Google Scholar
  128. 128.
    Yoon, S. J., S. Mallidi, J. M. Tam, J. O. Tam, A. Murthy, K. P. Johnston, K. V. Sokolov, and S. Y. Emelianov. Utility of biodegradable plasmonic nanoclusters in photoacoustic imaging. Opt. Lett. 35(22):3751–3753, 2010.PubMedGoogle Scholar
  129. 129.
    Zerda, A.d. l., Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B. T. Khuri-Yakub, X. Chen, H. Dai, and S. S. Gambhir. Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett. 10(6):2168–2172, 2010.PubMedGoogle Scholar
  130. 130.
    Zhang, H. F., K. Maslov, G. Stoica, and L. V. Wang. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24(7):848–851, 2006.PubMedGoogle Scholar
  131. 131.
    Zhang, Q., et al. Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography. Nanotechnology 20(39):395102, 2009.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Geoffrey P. Luke
    • 1
  • Doug Yeager
    • 1
  • Stanislav Y. Emelianov
    • 1
  1. 1.The University of Texas at AustinAustinUSA

Personalised recommendations