Annals of Biomedical Engineering

, Volume 40, Issue 3, pp 707–728 | Cite as

Analysis of Fluid Flow and Wall Shear Stress Patterns Inside Partially Filled Agitated Culture Well Plates

  • M. Mehdi Salek
  • Pooria Sattari
  • Robert J. Martinuzzi


The appearance of highly resistant bacterial biofilms in both community and hospitals environments is a major challenge in modern clinical medicine. The biofilm structural morphology, believed to be an important factor affecting the behavioral properties of these “super bugs”, is strongly influenced by the local hydrodynamics over the microcolonies. Despite the common use of agitated well plates in the biology community, they have been used rather blindly without knowing the flow characteristics and influence of the rotational speed and fluid volume in these containers. The main purpose of this study is to characterize the flow in these high-throughput devices to link local hydrodynamics to observed behavior in cell cultures. In this work, the flow and wall shear stress distribution in six-well culture plates under planar orbital translation is simulated using Computational Fluid Dynamics (CFD). Free surface, flow pattern and wall shear stress for two shaker speeds (100 and 200 rpm) and two volumes of fluid (2 and 4 mL) were investigated. Measurements with a non-intrusive optical shear stress sensor and High Frame-rate Particle Imaging Velocimetry (HFPIV) are used to validate CFD predictions. An analytical model to predict the free surface shape is proposed. Results show a complex three-dimensional flow pattern, varying in both time and space. The distribution of wall shear stress in these culture plates has been related to the topology of flow. This understanding helps explain observed endothelial cell orientation and bacterial biofilm distributions observed in culture dishes. The results suggest that the mean surface stress field is insufficient to capture the underlying dynamics mitigating biological processes.


Six-well culture plates CFD Hydrodynamics Wall shear stress Optical shear stress sensor PIV Biofilms Endothelial cells 


  1. 1.
    Abelson, A., and M. Denny. Settlement of marine organisms in flow. Annu. Rev. Ecol. Syst. 28:317–339, 1997.CrossRefGoogle Scholar
  2. 2.
    Azevedo, N. F., A. R. Pinto, N. Reis, C. W. Keevil, and M. J. Vieira. Shear stress, temperature and inoculation concentration influence on the adhesion of water-stressed Helicobacter pylori to stainless steel 304. Appl. Environ. Microbiol. 72:2936–2941, 2006.PubMedCrossRefGoogle Scholar
  3. 3.
    Berson, R. E., M. R. Purcell, and M. K. Sharp. Computationally determined shear on cells grown in orbiting culture dishes. Adv. Exp. Med. Biol. 614:189–198, 2008.PubMedCrossRefGoogle Scholar
  4. 4.
    Bryers, J. D. Medical biofilms. Biotechnol. Bioeng. 100:1–18, 2008.PubMedCrossRefGoogle Scholar
  5. 5.
    Byrd, J. J., and T. M. Powledge. The Complete Idiots Guide to Microbiology. New York: Alpha, pp. 197–201, 2006.Google Scholar
  6. 6.
    Chen, M. J., Z. Zhang, and T. R. Bott. Effects of operating conditions on the adhesive strength of Pseudomonas fluorescens biofilms in tubes. Colloids Surf. B 43:61–71, 2005.CrossRefGoogle Scholar
  7. 7.
    Dardik, A., L. Chen, J. Frattini, H. Asada, F. Haziz, F. Kudo, and B. Sumpio. Differential effects of orbital and laminar shear stress on endothelial cells. J. Vasc. Surg. 41(5):869–880, 2005.PubMedCrossRefGoogle Scholar
  8. 8.
    Donlan, R., and J. Costerton. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15:167–193, 2002.PubMedCrossRefGoogle Scholar
  9. 9.
    Fluent Manual, Fluent 6.3 FLUENT Inc., 2006.Google Scholar
  10. 10.
    Greenspan, H. P., and L. N. Howard. On a time-dependent motion of a rotating fluid. J. Fluid Mech. 17:385–404, 1963.CrossRefGoogle Scholar
  11. 11.
    Greenspan, H. P. On the general theory of contained rotating fluid motion. J. Fluid Mech. 22(3):449–462, 1965.CrossRefGoogle Scholar
  12. 12.
    Haga, M., A. Yamashita, J. Paszkowiak, B. E. Sumpio, and A. Dardik. Oscillatory shear stress increases smooth muscle cell proliferation and Akt phosphorylation. J. Vasc. Surg. 37(6):1277–1284, 2003.PubMedCrossRefGoogle Scholar
  13. 13.
    Hopfinger, E. J., F. K. Browand, and Y. Gagne. Turbulence and waves in rotating tanks. J. Fluid Mech. 125:505–534, 1982.CrossRefGoogle Scholar
  14. 14.
    Hopfinger, E. J., and G. J. F. van Heijst. Vortices in rotating fluids. Ann. Rev. Fluid Mech. 25:241–289, 1993.CrossRefGoogle Scholar
  15. 15.
    Kostenko, V., M. M. Salek, P. Sattari, and R. J. Martinuzzi. Staphylococcus aureus biofilm formation and tolerance to antibiotics in response to oscillatory shear stresses of physiological levels. FEMS Immunol. Med. Microbiol. 59:421–431, 2010.PubMedGoogle Scholar
  16. 16.
    Kraiss, L. W., A. S. Weyrich, N. M. Alto, D. A. Dixon, T. M. Ennis, V. Modur, T. M. McIntyre, S. M. Prescott, and G. S. Zimmerman. Fluid flow activates a regulator of translation, p70/p85 S6 kinase, in human endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 278:H1537–H1544, 2000.PubMedGoogle Scholar
  17. 17.
    Ley, K., E. Lundgren, E. M. Berger, and K.-E. Arfors. Shear-dependent inhibition of granulocyte adhesion to cultured endothelium by dextran sulfate. Blood 73:1324–1330, 1989.PubMedGoogle Scholar
  18. 18.
    MacLeod, S. M., and D. J. Stickler. Species interactions in mixed-community crystalline biofilms on urinary catheters. Med. Microbiol. 56(Pt 11):1549–1557, 2007.CrossRefGoogle Scholar
  19. 19.
    Meda, M. S., A. J. Lopez, and A. Guyot. Candida inferior vena cava filter infection and septic thrombophlebitis. Br. J. Radiol. 80(950):e48–e49, 2007.PubMedCrossRefGoogle Scholar
  20. 20.
    Murray, T. S., M. Egan, and B. I. Kazmierczak. Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr. Opin. Pediatr. 19(1):83–88, 2007.PubMedCrossRefGoogle Scholar
  21. 21.
    Percival, S. L., and P. G. Bowler. Biofilms and their potential role in wound healing. Wounds 16:234–240, 2004.Google Scholar
  22. 22.
    Phillips, P. L., E. Sampson, Q. Yang, P. Antonelli, A. Progulske-Fox, and G. Schultz. Bacterial biofilms in wounds. Wound Healing South Afr. 1:10–12, 2008.Google Scholar
  23. 23.
    Presterl, E., A. Lassnigg, M. Eder, S. Reichmann, A. M. Hirschl, and W. Graninger. Effects of tigecycline, linezolid and vancomycin on biofilms of viridans streptococci isolates from patients with endocarditis. Int. J. Artif. Organs 30(9):798–804, 2007.PubMedGoogle Scholar
  24. 24.
    Purevdorj, B., J. W. Costerton, and P. Stoodley. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 68:4457–4464, 2002.PubMedCrossRefGoogle Scholar
  25. 25.
    Salek, M. M., S. Jones, and R. J. Martinuzzi. The influence of flow cell geometry related shear stresses on the distribution, structure and susceptibility of Pseudomonas aeruginosa 01 biofilms. Biofouling 25:711–725, 2009.PubMedCrossRefGoogle Scholar
  26. 26.
    Sattari, P. Design and Fabrication of an Optical Non-intrusive Shear Rate Sensor. M.Sc. Thesis, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2008.Google Scholar
  27. 27.
    Sherman, F. S. Viscous Flow. New York: McGraw-Hill, pp. 140–141, 1990.Google Scholar
  28. 28.
    Sillankorva, S., P. Neubauer, and J. Azeredo. Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC Biotechnol. 8:79, 2008.PubMedCrossRefGoogle Scholar
  29. 29.
    Simões, M., M. O. Pereira, S. Sillankorva, J. Azeredo, and M. J. Vieira. The effect of hydrodynamic conditions on the phenotype of Pseudomonas fluorescens biofilms. Biofouling 23:249–258, 2007.PubMedCrossRefGoogle Scholar
  30. 30.
    Simões, M., M. O. Pereira, and M. J. Vieira. The role of hydrodynamic stress on the phenotypic characteristics of single and binary biofilms of Pseudomonas fluorescens. Water Sci. Technol. 55:437–445, 2007.PubMedCrossRefGoogle Scholar
  31. 31.
    Sousa, C., M. Henriques, J. Azeredo, P. Teixeira, and R. Oliveira. Staphylococcus epidermidis glucose uptake in biofilm versus planktonic cells. World J. Microbiol. Biotechnol. 24:423–426, 2008.CrossRefGoogle Scholar
  32. 32.
    Stoodley, P., I. Dodds, J. D. Boyle, and H. M. Lappin-Scott. Influence of hydrodynamics and nutrients on biofilm structure. J. Appl. Microbiol. 85:S19–S28, 1999.CrossRefGoogle Scholar
  33. 33.
    White, F. M. Fluid Mechanics (6th ed.). New York: McGraw-Hill, pp. 164–166, 2008.Google Scholar
  34. 34.
    Wilson, D. W., J. A. Scalf, S. Forouhar, R. Muller, F. Taugwalder, M. Gharib, D. Fourguette, and D. Modarress. Diffractive optic fluid shear stress sensor. In: Trends in Optics and Photonics, Diffractive Optics and Micro-Optics, Vol. 41, edited by T. Li. Washington, DC: Optical Society of America, 2000, pp. 306–308.Google Scholar
  35. 35.
    Youngs, D. L. Time-dependent multi-material flow with large fluid distortion. In: Numerical Methods for Fluid Dynamics, edited by K. W. Morton, and M. J. Baines. New York: Academic, 1982.Google Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • M. Mehdi Salek
    • 1
    • 2
  • Pooria Sattari
    • 2
  • Robert J. Martinuzzi
    • 1
    • 2
  1. 1.Biofilm Engineering Research Group, Calgary Center for Innovative TechnologyUniversity of CalgaryCalgaryCanada
  2. 2.Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations