Skip to main content


Log in

The Effect of Magnesium Ion Concentration on the Fibrocartilage Regeneration Potential of Goat Costal Chondrocytes

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript


Magnesium has recently been explored as a potential biomaterial for degradable orthopedic implants but its effect on fibrocartilage remains unknown. The objective of this study was to assess the effect of high concentrations of magnesium ions on the matrix production of goat costal fibrochondrocytes in vitro. Cells were cultured using a scaffoldless approach with media containing magnesium chloride (MgCl2) or magnesium sulfate (MgSO4) at concentrations of 20, 50, and 100 mM in addition to the baseline magnesium concentration of 0.8 mM MgSO4. At 4 weeks, there were no significant differences in compressive tangent modulus and total matrix production between constructs cultured in 20 mM Mg2+ and the 0.8 mM Mg2+ control (435 ± 47 kPa). There was a significant decrease in compressive tangent modulus compared to the 0.8 mM Mg2+ constructs in the 50 mM MgCl2 and MgSO4 groups, while the 100 mM groups were not mechanically testable (p < 0.05). The collagen and glycosaminoglycan (GAG) content of the 50 and 100 mM MgCl2 and MgSO4 constructs was significantly lower than the control (6.9 ± 0.5% and 16.5 ± 1.3% per dry weight, respectively) (p < 0.05). The results show that goat costal fibrochondrocytes exhibit a high degree of resiliency to magnesium ion concentrations up to 20 mM in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others


  1. Almarza, A. J., A. C. Bean, L. S. Baggett, and K. A. Athanasiou. Biochemical analysis of the porcine temporomandibular joint disc. Br. J. Oral Maxillofac. Surg. 44:124–128, 2006.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson, D. E., and K. A. Athanasiou. Passaged goat costal chondrocytes provide a feasible cell source for temporomandibular joint tissue engineering. Ann. Biomed. Eng. 36:1992–2001, 2008.

    Article  PubMed  Google Scholar 

  3. Anderson, D. E., and K. A. Athanasiou. A comparison of primary and passaged chondrocytes for use in engineering the temporomandibular joint. Arch. Oral Biol. 54:138–145, 2009.

    Article  PubMed  CAS  Google Scholar 

  4. Athanasiou, K. A., A. J. Almarza, M. S. Detamore, and K. N. Kalpakci. Tissue Engineering of Temporomandibular Joint Cartilage. San Rafael: Morgan & Claypool Publishers, 2009.

    Google Scholar 

  5. Cohen, B., W. M. Lai, and V. C. Mow. A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. J. Biomech. Eng. 120:491–496, 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Detamore, M. S., J. G. Orfanos, A. J. Almarza, M. M. French, M. E. Wong, and K. A. Athanasiou. Quantitative analysis and comparative regional investigation of the extracellular matrix of the porcine temporomandibular joint disc. Matrix Biol. 24:45–57, 2005.

    Article  PubMed  CAS  Google Scholar 

  7. Feyerabend, F., F. Witte, M. Kamma, and R. Willumeit. Unphysiologically high magnesium concentrations support chondrocyte proliferation and redifferentiation. Tissue Eng. 12:3545–3556, 2006.

    Article  PubMed  CAS  Google Scholar 

  8. Fischer, J., M. H. Prosenc, M. Wolff, N. Hort, R. Willumeit, and F. Feyerabend. Interference of magnesium corrosion with tetrazolium-based cytotoxicity assays. Acta Biomater. 6:1813–1823, 2010.

    Article  PubMed  CAS  Google Scholar 

  9. Hagandora, C. K., T. W. Chase, and A. J. Almarza. A comparison of the mechanical properties of the goat temporomandibular joint disc to the mandibular condylar cartilage in unconfined compression. J. Dental Biomech., 2011. doi:10.4061/2011/212385.

  10. Hsu, J. T., H. L. Huang, M. T. Tsai, L. J. Fuh, and M. G. Tu. Effect of screw fixation on temporomandibular joint condylar prosthesis. J. Oral Maxillofac. Surg. 69:1320–1328, 2011.

    Article  PubMed  Google Scholar 

  11. Ingawale, S., and T. Goswami. Temporomandibular joint: disorders, treatments, and biomechanics. Ann. Biomed. Eng. 37:976–996, 2009.

    Article  PubMed  Google Scholar 

  12. Kapila, S., and Y. Xie. Targeted induction of collagenase and stromelysin by relaxin in unprimed and beta-estradiol-primed diarthrodial joint fibrocartilaginous cells but not in synoviocytes. Lab. Invest. 78:925–938, 1998.

    PubMed  CAS  Google Scholar 

  13. Kuttila, M., P. M. Niemi, S. Kuttila, P. Alanen, and Y. Le Bell. TMD treatment need in relation to age, gender, stress, and diagnostic subgroup. J. Orofac. Pain 12:67–74, 1998.

    PubMed  CAS  Google Scholar 

  14. Lee, C. H., Z. H. Wen, Y. C. Chang, S. Y. Huang, C. C. Tang, W. F. Chen, S. P. Hsieh, C. S. Hsieh, and Y. H. Jean. Intra-articular magnesium sulfate (MgSO4) reduces experimental osteoarthritis and nociception: association with attenuation of N-methyl-d-aspartate (NMDA) receptor subunit 1 phosphorylation and apoptosis in rat chondrocytes. Osteoarthritis Cartilage 17:1485–1493, 2009.

    Article  PubMed  CAS  Google Scholar 

  15. Li, L. C., J. C. Gao, and Y. Wang. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surf. Coat. Technol. 185:92–98, 2004.

    Article  CAS  Google Scholar 

  16. Loeser, R. F. Modulation of integrin-mediated attachment of chondrocytes to extracellular matrix proteins by cations, retinoic acid, and transforming growth factor beta. Exp. Cell Res. 211:17–23, 1994.

    Article  PubMed  CAS  Google Scholar 

  17. NIH. TMJ Disorders, March 2010. Available from:

  18. Sergerie, K., M. O. Lacoursiere, M. Levesque, and I. Villemure. Mechanical properties of the porcine growth plate and its three zones from unconfined compression tests. J. Biomech. 42:510–516, 2009.

    Article  PubMed  Google Scholar 

  19. Wilkes, C. H. Internal derangements of the temporomandibular joint. Pathological variations. Arch. Otolaryngol. Head Neck Surg. 115:469–477, 1989.

    Article  PubMed  CAS  Google Scholar 

  20. Witte, F., J. Fischer, J. Nellesen, H. A. Crostack, V. Kaese, A. Pisch, F. Beckmann, and H. Windhagen. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 27:1013–1018, 2006.

    Article  PubMed  CAS  Google Scholar 

  21. Witte, F., V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. J. Wirth, and H. Windhagen. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26:3557–3563, 2005.

    Article  PubMed  CAS  Google Scholar 

Download references


We gratefully acknowledge funding from the National Science Foundation under Grant No. 0812348. We would also like to thank Manasa P. Madoori for her help with the immunohistochemistry.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alejandro J. Almarza.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagandora, C.K., Tudares, M.A. & Almarza, A.J. The Effect of Magnesium Ion Concentration on the Fibrocartilage Regeneration Potential of Goat Costal Chondrocytes. Ann Biomed Eng 40, 688–696 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: