Skip to main content
Log in

Redifferentiation of Dedifferentiated Chondrocytes by Adenoviral Vector-Mediated TGF-β3 and Collagen-1 Silencing shRNA in 3D Culture

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Autologous chondrocytes remain one of the most preferable candidates among various therapeutic cell species because of their high efficacy, despite remarkable progress in discovery and development of therapeutic cells for cartilage regenerative medicine to date. However, the essential process of cell expansion via repeated monolayer sub-cultures inevitably induces chondrocytic dedifferentiation. In this study, we aimed to achieve and enhance redifferentiation of dedifferentiated chondrocytes with dual genes of transforming growth factor (TGF)-β3 and short hairpin RNA (shRNA) that restore chondrocytic phenotype and silence fibrous collagen type I (Col I), respectively. It was hypothesized that gene delivery of the two targets would promote chondrogenesis in chondrocytes, and meanwhile inhibit the expression of the undesired Col I. Three types of recombinant adenoviruses were constructed. Two of them were of single-function vectors with the ability to express either TGF-β3 (Ad-TGFβ3) or shRNA (specific for Col I, Ad-shRNA); the third type was of double-function vectors that encode both TGF-β3 and anti-Col I shRNA (Ad-double). We infected the dedifferentiated chondrocytes with Ad-double, or co-transduced them with Ad-TGFβ3 and Ad-shRNA at the same time (designated as Ad-combination). Data from real-time RT-PCR and histological staining suggested a restoration in the expression of cartilage-specific genes including aggrecan, type II collagen, and cartilage oligomeric matrix protein (COMP); while a significant down-regulation of Col I expression was observed in groups treated with Ad-double and Ad-combination compared to other control groups. These results demonstrated that, by genetic modification, dedifferentiated chondrocytes managed to redifferentiate back to chondrocytic phenotype, which may greatly facilitate cartilage regenerative medicine by providing sufficient number of competent therapeutic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Benya, P. D., S. R. Padilla, and M. E. Nimni. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell 15(4):1313–1321, 1978.

    Article  PubMed  CAS  Google Scholar 

  2. Benya, P. D., and J. D. Shaffer. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30(1):215–224, 1982.

    Article  PubMed  CAS  Google Scholar 

  3. Bonaventure, J., N. Kadhom, L. Cohen-Solal, K. H. Ng, J. Bourguignon, C. Lasselin, and P. Freisinger. Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp. Cell Res. 212(1):97–104, 1994.

    Article  PubMed  CAS  Google Scholar 

  4. Brittberg, M., A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331(14):889–895, 1994.

    Article  PubMed  CAS  Google Scholar 

  5. Buckwalter, J. A., and H. J. Mankin. Articular cartilage repair and transplantation. Arthritis Rheum. 41(8):1331–1342, 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Chaipinyo, K., B. W. Oakes, and M. P. Van Damme. The use of debrided human articular cartilage for autologous chondrocyte implantation: maintenance of chondrocyte differentiation and proliferation in type I collagen gels. J. Orthop. Res. 22(2):446–455, 2004.

    Article  PubMed  CAS  Google Scholar 

  7. Chung, C., and J. A. Burdick. Engineering cartilage tissue. Adv. Drug Deliv. Rev. 60(2):243–262, 2008.

    Article  PubMed  CAS  Google Scholar 

  8. Darling, E. M., and K. A. Athanasiou. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J. Orthop. Res. 23(2):425–432, 2005.

    Article  PubMed  CAS  Google Scholar 

  9. Enobakhare, B. O., D. L. Bader, and D. A. Lee. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1,9-dimethylmethylene blue. Anal. Biochem. 243(1):189–191, 1996.

    Article  PubMed  CAS  Google Scholar 

  10. Hao, J., R. R. Varshney, and D. A. Wang. TGF-beta3: a promising growth factor in engineered organogenesis. Expert Opin. Biol. Ther. 8(10):1485–1493, 2008.

    Article  PubMed  CAS  Google Scholar 

  11. Hao, J., R. R. Varshney, and D. A. Wang. Engineering osteogenesis and chondrogenesis with gene-enhanced therapeutic cells. Curr. Opin. Mol. Ther. 11(4):404–410, 2009.

    PubMed  CAS  Google Scholar 

  12. Hao, J., Y. Yao, R. R. Varshney, L. Wang, C. Prakash, H. Li, and D. A. Wang. Gene transfer and living release of transforming growth factor-beta3 for cartilage tissue engineering applications. Tissue Eng. Part C Methods 14(4):273–280, 2008.

    Article  PubMed  CAS  Google Scholar 

  13. Huch, K., J. Stove, W. Puhl, and K. P. Gunther. Review and comparison of culture-techniques for articular chondrocytes. Z. Orthop. Ihre. Grenzgeb. 140(2):145–152, 2002.

    Article  PubMed  CAS  Google Scholar 

  14. Kim, Y. J., R. L. Sah, J. Y. Doong, and A. J. Grodzinsky. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174(1):168–176, 1988.

    Article  PubMed  CAS  Google Scholar 

  15. Lin, L., C. Zhou, X. Wei, Y. Hou, L. Zhao, X. Fu, J. Zhang, and C. Yu. Articular cartilage repair using dedifferentiated articular chondrocytes and bone morphogenetic protein 4 in a rabbit model of articular cartilage defects. Arthritis Rheum. 58(4):1067–1075, 2008.

    Article  PubMed  CAS  Google Scholar 

  16. Malemud, C. J., S. Stevenson, F. Mehraban, R. S. Papay, A. F. Purchio, and V. M. Goldberg. The proteoglycan synthesis repertoire of rabbit chondrocytes maintained in type II collagen gels. Osteoarthr Cartil 2(1):29–41, 1994.

    Article  PubMed  CAS  Google Scholar 

  17. Marlovits, S., P. Zeller, P. Singer, C. Resinger, and V. Vecsei. Cartilage repair: generations of autologous chondrocyte transplantation. Eur. J. Radiol. 57(1):24–31, 2006.

    Article  PubMed  Google Scholar 

  18. Miyanishi, K., M. C. Trindade, D. P. Lindsey, G. S. Beaupre, D. R. Carter, S. B. Goodman, D. J. Schurman, and R. L. Smith. Dose- and time-dependent effects of cyclic hydrostatic pressure on transforming growth factor-beta3-induced chondrogenesis by adult human mesenchymal stem cells in vitro. Tissue Eng. 12(8):2253–2262, 2006.

    Article  PubMed  CAS  Google Scholar 

  19. Morales, T. I., and A. B. Roberts. Transforming growth factor beta regulates the metabolism of proteoglycans in bovine cartilage organ cultures. J. Biol. Chem. 263(26):12828–12831, 1988.

    PubMed  CAS  Google Scholar 

  20. Redini, F., M. Daireaux, A. Mauviel, P. Galera, G. Loyau, and J. P. Pujol. Characterization of proteoglycans synthesized by rabbit articular chondrocytes in response to transforming growth factor-beta (TGF-beta). Biochim. Biophys. Acta 1093(2–3):196–206, 1991.

    Article  PubMed  CAS  Google Scholar 

  21. Reginato, A. M., R. V. Iozzo, and S. A. Jimenez. Formation of nodular structures resembling mature articular cartilage in long-term primary cultures of human fetal epiphyseal chondrocytes on a hydrogel substrate. Arthritis Rheum. 37(9):1338–1349, 1994.

    Article  PubMed  CAS  Google Scholar 

  22. Sellers, R. S., D. Peluso, and E. A. Morris. The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage. J. Bone Joint Surg. Am. 79(10):1452–1463, 1997.

    PubMed  CAS  Google Scholar 

  23. Sung, L. Y., H. Y. Chiu, H. C. Chen, Y. L. Chen, C. K. Chuang, and Y. C. Hu. Baculovirus-mediated growth factor expression in dedifferentiated chondrocytes accelerates redifferentiation: effects of combinational transduction. Tissue Eng. Part A. 15(6):1353–1362, 2009.

    Article  PubMed  CAS  Google Scholar 

  24. Sung, L. Y., W. H. Lo, H. Y. Chiu, H. C. Chen, C. K. Chung, H. P. Lee, and Y. C. Hu. Modulation of chondrocyte phenotype via baculovirus-mediated growth factor expression. Biomaterials 28(23):3437–3447, 2007.

    Article  PubMed  CAS  Google Scholar 

  25. Ting, V., C. D. Sims, L. E. Brecht, J. G. McCarthy, A. K. Kasabian, P. R. Connelly, J. Elisseeff, G. K. Gittes, and M. T. Longaker. In vitro prefabrication of human cartilage shapes using fibrin glue and human chondrocytes. Ann. Plast. Surg. 40(4):413–420, 1998; discussion 420-1.

    Article  PubMed  CAS  Google Scholar 

  26. Walther, W., and U. Stein. Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs 60(2):249–271, 2000.

    Article  PubMed  CAS  Google Scholar 

  27. Weng, H. H., and J. Fitzgerald. Current issues in joint replacement surgery. Curr. Opin. Rheumatol. 18(2):163–169, 2006.

    Article  PubMed  Google Scholar 

  28. Wu, T. L., and D. Zhou. Viral delivery for gene therapy against cell movement in cancer. Adv. Drug Deliv. Rev. 63(8):671–677, 2011.

    Article  PubMed  CAS  Google Scholar 

  29. Yao, Y., C. Wang, R. R. Varshney, and D. A. Wang. Antisense makes sense in engineered regenerative medicine. Pharm. Res. 26(2):263–275, 2009.

    Article  PubMed  CAS  Google Scholar 

  30. Yao, Y., F. Zhang, R. Zhou, M. Li, and D. A. Wang. Continuous supply of TGFbeta3 via adenoviral vector promotes type I collagen and viability of fibroblasts in alginate hydrogel. J. Tissue Eng. Regen. Med. 4(7):497–504, 2010.

    Article  PubMed  CAS  Google Scholar 

  31. Yao, Y., F. Zhang, R. Zhou, K. Su, J. Fan, and D. A. Wang. Effects of combinational adenoviral vector-mediated TGF beta 3 transgene and shRNA silencing type I collagen on articular chondrogenesis of synovium-derived mesenchymal stem cells. Biotechnol. Bioeng. 106(5):818–828, 2010.

    Article  PubMed  CAS  Google Scholar 

  32. Yun, K., and H. T. Moon. Inducing chondrogenic differentiation in injectable hydrogels embedded with rabbit chondrocytes and growth factor for neocartilage formation. J. Biosci. Bioeng. 105(2):122–126, 2008.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang, F., Y. Yao, J. Hao, R. Zhou, C. Liu, Y. Gong, and D. A. Wang. A dual-functioning adenoviral vector encoding both transforming growth factor-beta3 and shRNA silencing type I collagen: construction and controlled release for chondrogenesis. J. Control Release 142(1):70–77, 2010.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by AcRF Tier 1 Grant RG64/08, Ministry of Education (MoE), Singapore.

Conflict of interest

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-An Wang.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 994 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Yao, Y., Su, K. et al. Redifferentiation of Dedifferentiated Chondrocytes by Adenoviral Vector-Mediated TGF-β3 and Collagen-1 Silencing shRNA in 3D Culture. Ann Biomed Eng 39, 3042–3054 (2011). https://doi.org/10.1007/s10439-011-0398-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0398-y

Keywords

Navigation