Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Development of a Full Body CAD Dataset for Computational Modeling: A Multi-modality Approach


The objective of this study was to develop full body CAD geometry of a seated 50th percentile male. Model development was based on medical image data acquired for this study, in conjunction with extensive data from the open literature. An individual (height, 174.9 cm, weight, 78.6 ± 0.77 kg, and age 26 years) was enrolled in the study for a period of 4 months. 72 scans across three imaging modalities (CT, MRI, and upright MRI) were collected. The whole-body dataset contains 15,622 images. Over 300 individual components representing human anatomy were generated through segmentation. While the enrolled individual served as a template, segmented data were verified against, or augmented with, data from over 75 literature sources on the average morphology of the human body. Non-Uniform Rational B-Spline (NURBS) surfaces with tangential (G1) continuity were constructed over all the segmented data. The sagittally symmetric model consists of 418 individual components representing bones, muscles, organs, blood vessels, ligaments, tendons, cartilaginous structures, and skin. Length, surface area, and volumes of components germane to crash injury prediction are presented. The total volume (75.7 × 103 cm3) and surface area (1.86 × 102 cm2) of the model closely agree with the literature data. The geometry is intended for subsequent use in nonlinear dynamics solvers, and serves as the foundation of a global effort to develop the next-generation computational human body model for injury prediction and prevention.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. 1.

    Andermahr, J., A. Jubel, A. Elsner, J. Johann, A. Prokop, K. E. Rehm, and J. Koebke. Anatomy of the clavicle and the intramedullary nailing of midclavicular fractures. Clin. Anat. 20(1):48–56, 2007.

  2. 2.

    Anderson, A. E., C. L. Peters, B. D. Tuttle, and J. A. Weiss. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J. Biomech. Eng. 127(3):364–373, 2005.

  3. 3.

    Ashburner, J., and K. J. Friston. Unified segmentation. NeuroImage 26(3):839–851, 2005.

  4. 4.

    Au, A. G., D. Palathinkal, A. B. Liggins, V. J. Raso, J. Carey, R. G. Lambert, and A. Amirfazli. A NURBS-based technique for subject-specific construction of knee bone geometry. Comput Methods Progr. Biomed. 92(1):20–34, 2008.

  5. 5.

    Beillas, P., Y. Lafon, and F. W. Smith. The effects of posture and subject-to-subject variations on the position, shape and volume of abdominal and thoracic organs. Stapp Car Crash J. 53:127–154, 2009.

  6. 6.

    Bell, K. L., N. Garrahan, M. Kneissel, N. Loveridge, E. Grau, M. Stanton, and J. Reeve. Cortical and cancellous bone in the human femoral neck: evaluation of an interactive image analysis system. Bone 19(5):541–548, 1996.

  7. 7.

    Blain, H., P. Chavassieux, N. Portero-Muzy, F. Bonnel, F. Canovas, M. Chammas, P. Maury, and P. D. Delmas. Cortical and trabecular bone distribution in the femoral neck in osteoporosis and osteoarthritis. Bone 43(5):862–868, 2008.

  8. 8.

    Braun, M. J., M. D. Meta, P. Schneider, and C. Reiners. Clinical evaluation of a high-resolution new peripheral quantitative computerized tomography (pQCT) scanner for the bone densitometry at the lower limbs. Phys. Med. Biol. 43(8):2279–2294, 1998.

  9. 9.

    Burmaster, D. Lognormal distributions for skin area as a function of body weight. Risk Anal. 18(1):27, 1998.

  10. 10.

    Chang, C. Y., J. D. Rupp, N. Kikuchi, and L. W. Schneider. Development of a finite element model to study the effects of muscle forces on knee-thigh-hip injuries in frontal crashes. Stapp Car Crash J. 52:475–504, 2008.

  11. 11.

    Cheng, H., L. Obergefell, and A. Rizer. Generator of body data (GEBOD) manual report, AL/CF-TR-1994-00511. Armstrong Laboratory, Wright Patterson Air Force Base, 1994.

  12. 12.

    Christensen, R. A nonlinear theory of viscoelasticity for application to elastomers. J. Appl. Mech. 47:762–768, 1980.

  13. 13.

    Cohen, Z. A., D. M. McCarthy, S. D. Kwak, P. Legrand, F. Fogarasi, E. J. Ciaccio, and G. A. Ateshian. Knee cartilage topography, thickness, and contact areas from MRI: in vitro calibration and in vivo measurements. Osteoarthr. Cartilage/OARS, Osteoarthritis Research Society 7(1):95–109, 1999.

  14. 14.

    Crowley, J. S., F. T. Brozoski, S. M. Duma, and E. A. Kennedy. Development of the Facial and Ocular Countermeasures Safety (FOCUS) headform. Aviat. Space Environ. Med. 80(9):831, 2009.

  15. 15.

    Diederichs, G., A. S. Issever, S. Greiner, B. Linke, and J. Korner. Three-dimensional distribution of trabecular bone density and cortical thickness in the distal humerus. J. Should. Elb. Surg. 8(3):399–407, 2009.

  16. 16.

    Dougherty, G., and D. Newman. Measurement of thickness and density of thin structures by computed tomography: a simulation study. Med. Phys. 26(7):1341–1348, 1999.

  17. 17.

    Duma, S. M., T. P. Ng, E. A. Kennedy, J. D. Stitzel, I. P. Herring, and F. Kuhn. Determination of significant parameters for eye injury risk from projectiles. J. Trauma 59(4):960–964, 2005.

  18. 18.

    Duma, S. M., P. H. Schreiber, J. D. McMaster, J. R. Crandall, C. R. Bass, and W. D. Pilkey. Dynamic injury tolerances for long bones of the female upper extremity. J. Anat. 194(3):463–471, 1999.

  19. 19.

    Eckstein, F., S. Milz, H. Anetzberger, and R. Putz. Thickness of the subchondral mineralised tissue zone (SMZ) in normal male and female and pathological human patellae. J. Anat. 192(1):81–90, 1998.

  20. 20.

    Fawzy, H., N. Alhodaib, C. D. Mazer, A. Harrington, D. Latter, D. Bonneau, L. Errett, and J. Mahoney. Sternal plating for primary and secondary sternal closure, can it improve sternal stability? J. Cardiothorac. Surg. 4:19, 2009.

  21. 21.

    Flannagan, C., M. Manary, L. Schneider, and M. Reed. An improved seating accommodation model with application to different user populations. Proceedings of the SAE World Congress & Exposition, Detroit, MI, Feb. 23–26, 1998. Vol. 1358, pp. 43–50, SAE, Warrendale, PA, USA.

  22. 22.

    Gayzik, F. S., C. A. Hamilton, J. C. Tan, C. McNally, S. M. Duma, K. D. Klinich, and J. D. Stitzel. A multi-modality image data collection protocol for full body finite element model development. SAE Technical Paper 2009-01-2261. doi:10.4271/2009-01-2261.

  23. 23.

    Gayzik, F. S., J. J. Hoth, M. Daly, J. W. Meredith, and J. D. Stitzel. A finite element-based injury metric for pulmonary contusion: investigation of candidate metrics through correlation with computed tomography. Stapp Car Crash J. 51:189–209, 2007.

  24. 24.

    Gayzik, F. S., J. J. Hoth, and J. D. Stitzel. Finite element-based injury metrics for pulmonary contusion via concurrent model optimization. Biomech. Model. Mechanobiol. 10(4):505–520, 2011.

  25. 25.

    Gayzik, F. S., R. S. Martin, H. C. Gabler, J. J. Hoth, S. M. Duma, J. W. Meredith, and J. D. Stitzel. Characterization of crash-induced thoracic loading resulting in pulmonary contusion. J. Trauma 66(3):840–849, 2009.

  26. 26.

    Gordon, C. C., T. Churchill, C. E. Clauser, B. Bradtmiller, J. T. McConville, I. Tebbetts, and R. A. Walker. 1988 Anthropometric survey of US Army personnel: methods and summary statistics. Technical Report NATICK/TR-89/044. US Army Natick Research, Development, and Engineering Center, Natick, MA, 1989.

  27. 27.

    Gray, H., and D. C. Carmine. Anatomy of the Human Body. Philadelphia: Lea & Febiger, 1985.

  28. 28.

    Hedenstierna, S., and P. Halldin. How does a three-dimensional continuum muscle model affect the kinematics and muscle strains of a finite element neck model compared to a discrete muscle model in rear-end, frontal, and lateral impacts. Spine 33(8):E236–E245, 2008.

  29. 29.

    Högler, W., C. J. R. Blimkie, C. T. Cowell, A. F. Kemp, J. Briody, P. Wiebe, N. Farpour-Lambert, C. S. Duncan, and H. J. Woodhead. A comparison of bone geometry and cortical density at the mid-femur between prepuberty and young adulthood using magnetic resonance imaging. Bone 33(5):771–778, 2003.

  30. 30.

    Holzbaur, K. R., W. M. Murray, G. E. Gold, and S. L. Delp. Upper limb muscle volumes in adult subjects. J. Biomech. 40(4):742–749, 2007.

  31. 31.

    Iwamoto, M., Y. Kisanuki, I. Wantanabe, K. Furusu, K. Miki, and J. Hasegawa. Development of a finite element model of the Total Human Model for Safety (THUMS) and application to injury reconstruction. Proceedings of the International Research Council on the Biomechanics of Injury (IRCOBI). Sept. 18–20, 2002. Munich, Germany, pp. 1–12.

  32. 32.

    Kamibayashi, L. K., and F. J. Richmond. Morphometry of human neck muscles. Spine 23(12):1314–1323, 1998.

  33. 33.

    Kemper, A. R., C. McNally, E. A. Kennedy, S. J. Manoogian, A. L. Rath, T. P. Ng, J. D. Stitzel, E. P. Smith, S. M. Duma, and F. Matsuoka. Material properties of human rib cortical bone from dynamic tension coupon testing. Stapp Car Crash J. 49:199–230, 2005.

  34. 34.

    Kimpara, H., J. B. Lee, K. H. Yang, A. I. King, M. Iwamoto, I. Watanabe, and K. Miki. Development of a three-dimensional finite element chest model for the 5(th) percentile female. Stapp Car Crash J. 49:251–269, 2005.

  35. 35.

    Knaub, K., C. Van Ee, C. Cheng, B. Poon, C. Spritzer, and B. S. Myers. Measurement of Human Neck Muscle Volume Geometry and Physiologic Cross-Sectional Area in 5th, 50th, and 95th Percentile Subjects Using Cadaveric Dissection and MRI. National Highway Traffic Safety Administration, NHTSA-98-3588-34, 1999.

  36. 36.

    Li, Z., M. W. Kindig, J. R. Kerrigan, C. D. Untaroiu, D. Subit, J. R. Crandall, and R. W. Kent. Rib fractures under anterior-posterior dynamic loads: experimental and finite-element study. J. Biomech. 43:228–234, 2010.

  37. 37.

    Lieber, R. L. Skeletal Muscle Structure, Function, & Plasticity: The Physiological Basis of Rehabilitation. Baltimore: Lippincott Williams and Wilkins, 2002.

  38. 38.

    Gladman, B. LS-Dyna Keyword User’s Manual v. 971. Livermore, CA: Livermore Software Technology Corporation, 1997.

  39. 39.

    Manary, M., C. Flannagan, M. Reed, and L. Schneider. Human Subject Testing in Support of ASPECT, SAE Technical Paper 1999-01-0960. doi:10.4271/1999-01-0960, 1999.

  40. 40.

    Manoogian, S. J., E. A. Kennedy, K. A. Wilson, S. M. Duma, and N. M. Alem. Predicting neck injuries due to head-supported mass. Aviat. Space Environ. Med. 77(5):509–514, 2006.

  41. 41.

    Maurel, N., A. Diop, and J. Grimberg. A 3D finite element model of an implanted scapula: importance of a multiparametric validation using experimental data. J. Biomech. 38(9):1865–1872, 2005.

  42. 42.

    McConville, J. T., T. D. Churchill, I. Kaleps, C. E. Clauser, and J. Cuzzi. Anthropometric relationships of body and body segment moments of inertia. Technical Report AFAMRL-TR-80-119, Aerospace Medical Research Laboratory, Wright–Patterson Air Force Base, Dayton, Ohio, 1980.

  43. 43.

    Mertz, H. Anthropomorphic test devices. In: Accidental Injury, Biomechanics and Prevention, edited by A. Nahum, and J. Melvin. New York: Springer, 1993, pp. 66–84.

  44. 44.

    Moorcroft, D. M., J. D. Stitzel, G. G. Duma, and S. M. Duma. Computational model of the pregnant occupant: predicting the risk of injury in automobile crashes. Am. J. Obstet. Gynecol. 189(2):540–544, 2003.

  45. 45.

    Moorcroft, D. M., J. D. Stitzel, S. M. Duma, and G. G. Duma. The effects of uterine ligaments on the fetal injury risk in frontal automobile crashes. Proc. Inst. Mech. Eng. D J. Automob. Eng. 217(D):1049–1055, 2003.

  46. 46.

    Moss, S., Z. Wang, M. Salloum, M. Reed, M. van Ratingen, D. Cesari, R. Scherer, T. Uchimura, and M. Beusenberg. Anthropometry for WorldSID a world-harmonized midsize male side impact crash dummy. Proceedings of the SAE Government Industry Meeting. Washington, DC, June 19th–21st, pp. 1–11, 2000.

  47. 47.

    Myoung, H., Y. Y. Kim, M. S. Heo, S. S. Lee, S. C. Choi, and M. J. Kim. Comparative radiologic study of bone density and cortical thickness of donor bone used in mandibular reconstruction. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 92(1):23–29, 2001.

  48. 48.

    Netter, F. Atlas of Human Anatomy, 4th ed. Philadelphia: Saunders/Elsevier, 2006.

  49. 49.

    Ogden, C. L., C. D. Fryar, M. D. Carroll, and K. M. Flegal. Mean body weight, height, and body mass index, United States 1960–2002. Advance data from vital and health statistics; no. 347, 1–18. Hyattsville, Maryland: National Center for Health Statistics, 2004.

  50. 50.

    Peretz, A. M., J. A. Hipp, and M. H. Heggeness. The internal bony architecture of the sacrum. Spine 23(9):971–974, 1998.

  51. 51.

    Power, E. D., S. M. Duma, J. D. Stitzel, I. P. Herring, R. L. West, C. R. Bass, J. S. Crowley, and F. T. Brozoski. Computer modeling of airbag-induced ocular injury in pilots wearing night vision goggles. Aviat. Space Environ. Med. 73(10):1000–1006, 2002.

  52. 52.

    Prevrhal, S., K. Engelke, and W. A. Kalender. Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys. Med. Biol. 44(3):751–764, 1999.

  53. 53.

    Robbins, D. Anthropometric specifications for mid-sized male dummy. In: Anthropometry of Motor Vehicle Occupants, Vol. 2. US Department of Transportation, National Highway Traffic Safety Administration, Washington, DC, UMTRI-83-53-2, 1983.

  54. 54.

    Robin, S. Human Model for Safety—A joint effort towards the development of redefined human-like car-occupant models. In: Proceedings of the 17th International Technical Conference for the Enhanced Safety of Vehicles, 4–7 June 2001, Amsterdam, pp. 297–306, 2001.

  55. 55.

    Ruan, J., R. El-Jawahri, L. Chai, S. Barbat, and P. Prasad. Prediction and analysis of human thoracic impact responses and injuries in cadaver impacts using a full human body finite element model. Stapp Car Crash J. 47:299–321, 2003.

  56. 56.

    Ruan, J. S., R. El-Jawahri, S. Barbat, and P. Prasad. Biomechanical analysis of human abdominal impact responses and injuries through finite element simulations of a full human body model. Stapp Car Crash J. 49:343–366, 2005.

  57. 57.

    Scherf, H., and R. Tilgner. A new high-resolution computed tomography (CT) segmentation method for trabecular bone architectural analysis. Am. J. Phys. Anthropol. 140(1):39–51, 2009.

  58. 58.

    Schneider, L., D. Robbins, M. Pflug, and R. Snyder. Development of anthropometrically based design specifications for an advanced adult anthropometric dummy family. In: Anthropometry of Motor Vehicle Occupants, Vol. 1. US Department of Transportation, National Highway Traffic Safety Administration, Washington, DC. UMTRI-83-53-1, 1983.

  59. 59.

    Seki, S., and H. Iwamoto. Disruptive forces for swine heart, liver, and spleen: their breaking stresses. J. Trauma 45(6):1079–1083, 1998.

  60. 60.

    Shigeta, K., Y. Kitagawa, and T. Yasuki. Development of next generation human FE model capable of organ injury prediction. Procedings of the 21st International Technical Conference on the Enhanced Safety of Vehicles. Stuttgart, Germany, June 15th–18th, 09-0111, 2009.

  61. 61.

    Spitzer, V., M. Ackerman, A. Scherzinger, and D. Whitlock. The visible human male: a technical report. J. Am. Med. Inform. Assoc. 3:118–130, 1996.

  62. 62.

    Stitzel, J. D., J. T. Barretta, and S. M. Duma. Predicting fractures due to blunt impact: a sensitivity analysis of the effects of altering failure strain of human rib cortical bone. Int. J. Crashworthiness 9(6):633–642, 2004.

  63. 63.

    Stitzel, J. D., G. A. Hansen, I. P. Herring, and S. M. Duma. Blunt trauma of the aging eye: injury mechanisms and increasing lens stiffness. Arch. Ophthalmol. 123(6):789–794, 2005.

  64. 64.

    Virtama, P., and T. Helela. Radiographic measurements of cortical bone: Variations in a normal population between 1 and 90 years of age. Acta Radiol Suplementum 293:1–268, 1969.

  65. 65.

    Weaver, A. A., E. A. Kennedy, S. M. Duma, and J. D. Stitzel. Evaluation of different projectiles in matched experimental eye impact simulations. J. Biomech. Eng. 133(3):031002, 2011.

  66. 66.

    Weaver, A. A., K. L. Loftis, S. M. Duma, and J. D. Stitzel. Biomechanical modeling of eye trauma for different orbit anthropometries. J. Biomech. 44(7):1296–1303, 2011.

  67. 67.

    Weaver, A. A., K. L. Loftis, J. C. Tan, S. M. Duma, and J. D. Stitzel. CT based three-dimensional measurement of orbit and eye anthropometry. Invest. Ophthalmol. Vis. Sci. 51(10):4892–4897, 2010.

  68. 68.

    Xia, Y., W. Lin, and Y. X. Qin. The influence of cortical end-plate on broadband ultrasound attenuation measurements at the human calcaneus using scanning confocal ultrasound. J. Acoust. Soc. Am. 118(3 Pt 1):1801–1807, 2005.

  69. 69.

    Yang, K. H., J. Hu, N. A. White, A. I. King, C. C. Chou, and P. Prasad. Development of numerical models for injury biomechanics research: a review of 50 years of publications in the Stapp Car Crash Conference. Stapp Car Crash J. 50:429–490, 2006.

Download references


Funding for this study was provided by the Global Human Body Models Consortium, LLC (GHBMC) through grant WFU: FBM-001. CAD development study was supported by Zygote Media Group, Inc. (American Fork, UT).

Conflict of Interest

The authors have no conflict of interest to report.

Author information

Correspondence to J. D. Stitzel.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.



Table A1 Landmarks acquired for the external anthropometry study used in model construction

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gayzik, F.S., Moreno, D.P., Geer, C.P. et al. Development of a Full Body CAD Dataset for Computational Modeling: A Multi-modality Approach. Ann Biomed Eng 39, 2568 (2011). https://doi.org/10.1007/s10439-011-0359-5

Download citation


  • CAD
  • Full body model
  • Seated
  • Occupant
  • Injury
  • Biomechanics
  • Simulation
  • Modeling
  • FEA