An Optimization-Based Simultaneous Approach to the Determination of Muscular, Ligamentous, and Joint Contact Forces Provides Insight into Musculoligamentous Interaction

Abstract

Typical inverse dynamics approaches to the calculation of muscle, ligament, and joint contact forces are based on a step-wise solution of the equations of motion. This approach is therefore limited in its ability to provide insight as to the muscular, ligamentous, and articular interactions that create joint stability. In this study, a new musculoskeletal model of the lower limb is described, in which the equations of motion describing the force and moment equilibrium at the joints of the lower limb are solved simultaneously using optimization techniques. The new model was employed to analyze vertical jumping using a variety of different optimization cost functions and the results were compared to more traditional approaches. The new model was able to find a solution with lower muscular force upper bounds due to the ability of the ligaments to contribute to moment equilibrium at the ankle and knee joints. Equally, the new model produced lower joint contact forces than traditional approaches for cases which also included a consideration as to ligament or joint contact forces within the cost function. This study demonstrates the possibility of solving the inverse dynamic equations of motion simultaneously using contemporary technology, and further suggests that this might be important due to the complementary function of the muscles and ligaments in creating joint stability.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

Abbreviations

\( \hat{a}_{i} \) :

Linear acceleration of the center of mass

\( \hat{c}_{i} \) :

Vector from the proximal joint to the segment COM

\( \hat{d}_{i} \) :

Vector from the proximal to the distal joint

f :

Cost function

F j :

Magnitude of force in muscle

\( \hat{g} \) :

Acceleration due to gravity

i :

Segment/joint number (numbering from distal to proximal)

\( \hat{I}_{i} \) :

Inertia tensor

j :

Muscle or ligament number

\( \hat{J}_{i} \) :

Joint contact force at proximal end of segment

k1, k2, k3:

Cost function coefficients

L j :

Magnitude of force in ligament

\( \hat{m}_{i} \) :

Mass of segment

\( \hat{M}_{i} \) :

Inter-segmental moment at proximal end of segment

n1, n2, n3:

Cost function exponents

\( \hat{o}_{ij} \) :

Line of action of biarticular muscle j about segment i

\( \hat{p}_{ij} \) :

Line of action of muscle j about joint i

\( \hat{q}_{ij} \) :

Line of action of ligament j about joint i

\( \hat{r}_{ij} \) :

Moment arm of muscle j about joint i

\( \hat{S}_{i} \) :

Inter-segmental force at proximal end of segment

\( \hat{s}_{ij} \) :

Moment arm of ligament j about joint i

U :

Total number of muscles

V :

Total number of ligaments

W :

Total number of joints

\( \dot{\hat{\theta }}_{i} \) :

Angular velocity of segment

\( \ddot{\hat{\theta }}_{i} \) :

Angular acceleration of segment

References

  1. 1.

    Amis, A. A., A. M. J. Bull, C. M. Gupte, I. Hijazi, A. Race, and J. R. Robinson. Biomechanics of the PCL and related structures: posterolateral, posteromedial and meniscofemoral ligaments. Knee Surg. Sports Traumatol. Arthrosc. 11:271–281, 2003.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Bobbert, M. F., K. G. M. Gerritsen, M. C. A. Litjens, and A. J. VanSoest. Why is countermovement jump height greater than squat jump height? Med. Sci. Sports Exerc. 28:1402–1412, 1996.

    PubMed  CAS  Google Scholar 

  3. 3.

    Buchanan, T. S., D. G. Lloyd, K. Manal, and T. F. Besier. Neuromusculoskeletal modeling: estimation of muscle forces and joint moments from measurements of neural command. J. Appl. Biomech. 20:367–395, 2004.

    PubMed  Google Scholar 

  4. 4.

    Challis, J. H., and D. G. Kerwin. An analytical examination of muscle force estimations using optimization techniques. Proc. Inst. Mech. Eng. 207:139–148, 1993.

    CAS  Google Scholar 

  5. 5.

    Chandrashekar, N., H. Mansouri, J. Slauterbeck, and J. Hashemi. Sex-based differences in the tensile properties of the human anterior cruciate ligament. J. Biomech. 39:2943–2950, 2006.

    PubMed  Article  Google Scholar 

  6. 6.

    Charlton, I. W., and G. R. Johnson. A model for the prediction of forces at the glenohumeral joint. Proc. Inst. Mech. Eng. H J. Eng. Med. 220:801–812, 2006.

    Article  CAS  Google Scholar 

  7. 7.

    Cleather, D. J. Forces in the Knee During Vertical Jumping and Weightlifting. PhD Thesis, Imperial College London, 2010.

  8. 8.

    Cleather, D. J., and A. M. J. Bull. Influence of inverse dynamics methods on the calculation of inter-segmental moments in vertical jumping and weightlifting. Biomed. Eng. Online 9:74, 2010.

    PubMed  Article  Google Scholar 

  9. 9.

    Cleather, D. J., and A. M. J. Bull. Lower extremity musculoskeletal geometry effects the calculation of patellofemoral forces in vertical jumping and weightlifting. Proc. Inst. Mech. Eng. H J. Eng. Med. 224:1073–1083, 2010.

    Article  CAS  Google Scholar 

  10. 10.

    Cleather, D. J., J. E. Goodwin, and A. M. J. Bull. Erratum to: an optimization approach to inverse dynamics provides insight as to the function of the biarticular muscles during vertical jumping. Ann. Biomed. Eng., in press, 2011.

  11. 11.

    Cleather, D. J., J. E. Goodwin, and A. M. J. Bull. An optimization approach to inverse dynamics provides insight as to the function of the biarticular muscles during vertical jumping. Ann. Biomed. Eng. 39:147–160, 2011. doi:10.1007/s10439-010-0161-9.

    PubMed  Article  Google Scholar 

  12. 12.

    Crowninshield, R. D., and R. A. Brand. A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14:793–801, 1981.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    D’Lima, D. D., S. Patil, N. Steklov, S. Chien, and C. W. Colwell. In vivo knee moments and shear after total knee arthroplasty. J. Biomech. 40:S11–S17, 2007.

    PubMed  Article  Google Scholar 

  14. 14.

    D’Lima, D. D., S. Patil, N. Steklov, J. E. Slamin, and C. W. Colwell. The Chitranjan Ranawat Award—in vivo knee forces after total knee arthroplasty. Clin. Orthop. Relat. Res. 440:45–49, 2005.

    PubMed  Article  Google Scholar 

  15. 15.

    D’Lima, D. D., S. Patil, N. Steklov, J. E. Slamin, and C. W. Colwell. Tibial forces measured in vivo after total knee arthroplasty. J. Arthroplast. 21:255–262, 2006.

    Article  Google Scholar 

  16. 16.

    D’Lima, D. D., N. Steklov, S. Patil, and C. W. Colwell. The Mark Coventry Award—in vivo knee forces during recreation and exercise after knee arthroplasty. Clin. Orthop. Relat. Res. 466:2605–2611, 2008.

    PubMed  Article  Google Scholar 

  17. 17.

    de Leva, P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 29:1223–1230, 1996.

    PubMed  Article  Google Scholar 

  18. 18.

    Dumas, R., R. Aissaoui, and J. A. de Guise. A 3D generic inverse dynamic method using wrench notation and quaternion algebra. Comput. Methods Biomech. Biomed. Eng. 7:159–166, 2004.

    Article  CAS  Google Scholar 

  19. 19.

    Erdemir, A., S. McLean, W. Herzog, and A. J. van den Bogert. Model-based estimation of muscle forces exerted during movements. Clin. Biomech. 22:131–154, 2007.

    Article  Google Scholar 

  20. 20.

    Harfe, D. T., C. R. Chuinard, L. M. Espinoza, K. A. Thomas, and M. Solomonow. Elongation patterns of the collateral ligaments of the human knee. Clin. Biomech. 13:163–175, 1998. doi:10.1016/S0268-0033(97)00043-0.

    Article  Google Scholar 

  21. 21.

    Horn, B. K. P. Closed form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4:629–642, 1987.

    Article  Google Scholar 

  22. 22.

    Klein Horsman, M. D., H. F. J. M. Koopman, F. C. T. van der Helm, L. Poliacu Prose, and H. E. J. Veeger. Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin. Biomech. 22:239–247, 2007.

    Article  CAS  Google Scholar 

  23. 23.

    Lees, A., J. Vanrenterghem, and D. de Clercq. The maximal and submaximal vertical jump: implications for strength and conditioning. J. Strength Cond. Res. 18:787–791, 2004.

    PubMed  Google Scholar 

  24. 24.

    Li, G., K. R. Kaufman, E. Y. S. Chao, and H. E. Rubash. Prediction of antagonistic muscle forces using inverse dynamic optimization during flexion/extension of the knee. J. Biomech. Eng. 121:316–322, 1999.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Nha, K. W., R. Papannagari, T. J. Gill, S. K. Van de Velde, A. A. Freiberg, H. E. Rubash, and G. Li. In vivo patellar tracking: clinical motions and patellofemoral indices. J. Orthop. Res. 26:1067–1074, 2008.

    PubMed  Article  Google Scholar 

  26. 26.

    Noyes, F. R., and E. S. Grood. The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J. Bone Joint Surg. 58:1074–1082, 1976.

    PubMed  CAS  Google Scholar 

  27. 27.

    Pflum, M. A., K. B. Shelburne, M. R. Torry, M. J. Decker, and M. G. Pandy. Model prediction of anterior cruciate ligament force during drop-landings. Med. Sci. Sports Exerc. 36:1949–1958, 2004.

    PubMed  Article  Google Scholar 

  28. 28.

    Raikova, R. T. Investigation of the influence of the elbow joint reaction on the predicted muscle forces using different optimization functions. J. Musculoskelet. Res. 12:31–43, 2009.

    Article  Google Scholar 

  29. 29.

    Rasmussen, J., M. Damsgaard, and M. Voigt. Muscle recruitment by the min/max criterion—a comparative numerical study. J. Biomech. 34:409–415, 2001.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Robinson, J. R., A. M. J. Bull, and A. A. Amis. Structural properties of the medial collateral ligament complex of the human knee. J. Biomech. 38:1067–1074, 2005.

    PubMed  Article  Google Scholar 

  31. 31.

    Simpson, K. J., and L. Kanter. Jump distance of dance landings influencing internal joint forces: I. Axial forces. Med. Sci. Sports Exerc. 29:916–927, 1997.

    PubMed  CAS  Google Scholar 

  32. 32.

    Smith, A. J. Estimates of muscle and joint forces at the knee and ankle during a jumping activity. J. Hum. Mov. Stud. 1:78–86, 1975.

    Google Scholar 

  33. 33.

    Southgate, D. Capsular Restraints of the Glenohumeral Joint. PhD Thesis, Imperial College London, 2010.

  34. 34.

    Sugita, T., and A. A. Amis. Anatomic and biomechanical study of the lateral collateral and popliteofibular ligaments. Am. J. Sports Med. 29:466–472, 2001.

    PubMed  CAS  Google Scholar 

  35. 35.

    Tsirakos, D., V. Baltzopoulos, and R. Bartlett. Inverse optimization: functional and physiological considerations related to the force-sharing problem. Crit. Rev. Biomed. Eng. 25:371–407, 1997.

    PubMed  CAS  Google Scholar 

  36. 36.

    Van Sint Jan, S. Skeletal Landmark Definitions: Guidelines for Accurate and Reproducible Palpation. University of Brussels, Department of Anatomy (www.ulb.ac.be/~anatemb), 2005.

  37. 37.

    Van Sint Jan, S., and U. D. Croce. Identifying the location of human skeletal landmarks: why standardized definitions are necessary—a proposal. Clin. Biomech. 20:659–660, 2005.

    Article  Google Scholar 

  38. 38.

    Vanezis, A., and A. Lees. A biomechanical analysis of good and poor performers of the vertical jump. Ergonomics 48:1594–1603, 2005.

    PubMed  Article  Google Scholar 

  39. 39.

    Varadarajan, K. M., A. L. Moynihan, D. D’Lima, C. W. Colwell, and G. Li. In vivo contact kinematics and contact forces of the knee after total knee arthroplasty during dynamic weight-bearing activities. J. Biomech. 41:2159–2168, 2008.

    PubMed  Article  Google Scholar 

  40. 40.

    Winter, D. A. Biomechanics and Motor Control of Human Movement. Hoboken, NJ: John Wiley & Sons, 2005, 344 pp.

    Google Scholar 

  41. 41.

    Woltring, H. J. A Fortran package for generalized, cross-validatory spline smoothing and differentiation. Adv. Eng. Softw. 8:104–113, 1986.

    Google Scholar 

  42. 42.

    Woo, S. L.-Y., J. M. Hollis, D. J. Adams, R. M. Lyon, and S. Takai. Tensile properties of the human femur-anterior cruciate ligament-tibia complex. Am. J. Sports Med. 19:217–225, 1991.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Yamaguchi, G. T. Dynamic Modeling of Musculoskeletal Motion: A Vectorized Approach for Biomechanical Analysis in Three Dimensions. New York, NY: Springer, 2001, 257 pp.

    Google Scholar 

  44. 44.

    Zatsiorsky, V. M. Kinetics of Human Motion. Champaign, IL: Human Kinetics, 2002, 72 pp.

    Google Scholar 

Download references

Conflict of interest

There are no conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Cleather.

Additional information

Associate Editor Catherine Disselhorst-Klug oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cleather, D.J., Bull, A.M.J. An Optimization-Based Simultaneous Approach to the Determination of Muscular, Ligamentous, and Joint Contact Forces Provides Insight into Musculoligamentous Interaction. Ann Biomed Eng 39, 1925–1934 (2011). https://doi.org/10.1007/s10439-011-0303-8

Download citation

Keywords

  • Musculoskeletal modeling
  • Muscle force
  • Joint contact force
  • Ligament force
  • Inverse dynamics