Characterization of Mitral Valve Annular Dynamics in the Beating Heart

Abstract

The objective of this study is to establish a mathematical characterization of the mitral valve annulus that allows a precise qualitative and quantitative assessment of annular dynamics in the beating heart. We define annular geometry through 16 miniature markers sewn onto the annuli of 55 sheep. Using biplane videofluoroscopy, we record marker coordinates in vivo. By approximating these 16 marker coordinates through piecewise cubic splines, we generate a smooth mathematical representation of the 55 mitral annuli. We time-align these 55 annulus representations with respect to characteristic hemodynamic time points to generate an averaged baseline annulus representation. To characterize annular physiology, we extract classical clinical metrics of annular form and function throughout the cardiac cycle. To characterize annular dynamics, we calculate displacements, strains, and curvature from the discrete mathematical representations. To illustrate potential future applications of this approach, we create rapid prototypes of the averaged mitral annulus at characteristic hemodynamic time points. In summary, this study introduces a novel mathematical model that allows us to identify temporal, regional, and inter-subject variations of clinical and mechanical metrics that characterize mitral annular form and function. Ultimately, this model can serve as a valuable tool to optimize both surgical and interventional approaches that aim at restoring mitral valve competence.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1.

    Azencott, R., R. Glowinsky, J. He, R. H. W. Hoppe, A. Jajoo, A. Martynenko, S. Benzecry, S. H. Little, and W. A. Zoghbi. Diffeomorphic matching and dynamic deformable surfaces in 3D medical imaging. Comput. Methods Appl. Math. 10:1–57, 2010.

    Google Scholar 

  2. 2.

    Bonow, R. O., B. A. Carabello, K. Chatterjee, A. C. de Leon, D. P. Faxon, M. D. Freed, W. H. Gaasch, B. W. Lytle, R. A. Nishimura, P. T. O’Gara, R. A. O’Rourke, C. M. Otto, P. M. Shah, J. S. Shanewise, S. C. Smith, A. K. Jacobs, C. D. Adams, J. L. Anderson, E. M. Antman, D. P. Faxon, V. Fuster, J. L. Halperin, L. F. Hiratzka, S. A. Hunt, B. W. Lytle, R. Nishimura, R. L. Page, B. Riegel, and A. C. C. Heart. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease. Circulation 114:E84–E231, 2006.

    PubMed  Article  Google Scholar 

  3. 3.

    Bothe, W., J. P. Escobar Kvitting, E. H. Stephens, J. C. Swanson, N. B. Ingels, and D. C. Miller. Effects of annuloplasty ring implantation on regional mitral leaflet tenting area during acute myocardial ischemia. J. Thorac. Cardiovasc. Surg. 141:345–353, 2011.

    PubMed  Article  Google Scholar 

  4. 4.

    Bothe, W., E. Kuhl, J. P. Kvitting, M. K. Rausch, S. Goktepe, J. C. Swanson, N. B. Ingels, and D. C. Miller. Rigid, complete annuloplasty rings increase anterior mitral leaflet strains in the normal beating ovine heart (submitted).

  5. 5.

    Bothe, W., J. P. Kvitting, J. C. Swanson, S. Goktepe, K. N. Vo, N. B. Ingels, and D. C. Miller. How do annuloplasty rings affect mitral leaflet dynamic motion? Eur. J. Cardiothorac. Surg. 38(3):340–349, 2010.

    PubMed  Article  Google Scholar 

  6. 6.

    Bothe, W., J. P. Kvitting, J. C. Swanson, S. Hartnett, N. B. Ingels, Jr., and D. C. Miller. Effects of different annuloplasty rings on anterior mitral leaflet dimensions. J. Thorac. Cardiovasc. Surg. 139:1114–1122, 2010.

    PubMed  Article  Google Scholar 

  7. 7.

    Carpentier, A. La valvuloplastie reconstitutive. Une nouvelle technique de valvuloplastie mitrale. Presse Med. 77:251–253, 1969.

    PubMed  CAS  Google Scholar 

  8. 8.

    Carpentier, A. Cardiac valve surgery—the “French correction”. J. Thorac. Cardiovasc. Surg. 86:323–337, 1983.

    PubMed  CAS  Google Scholar 

  9. 9.

    Conti, C. A., E. Votta, A. Della Corte, L. Del Viscovo, C. Bancone, M. Cotrufo, and A. Redaelli. Dynamic finite element analysis of the aortic root from MRI-derived parameters. Med. Eng. Phys. 32:212–221, 2010.

    PubMed  Article  Google Scholar 

  10. 10.

    Dagum, P., G. R. Green, F. J. Nistal, G. T. Daughters, T. A. Timek, L. E. Foppiano, A. F. Bolger, N. B. Ingels, and D. C. Miller, Jr. Deformational dynamics of the aortic root: modes and physiologic determinants. Circulation 100:II54–II62, 1999.

    PubMed  CAS  Google Scholar 

  11. 11.

    Dagum, P., T. A. Timek, G. R. Green, D. Lai, G. T. Daughters, D. H. Liang, M. Hayase, N. B. Ingels, Jr., and D. C. Miller. Coordinate-free analysis of mitral valve dynamics in normal and ischemic hearts. Circulation 102:III62–III69, 2000.

    PubMed  CAS  Google Scholar 

  12. 12.

    de Boor, C. A Practical Guide to Splines. New York: Springer, 368 pp, 1978.

  13. 13.

    Eckert, C. E., B. Zubiate, M. Vergnat, J. H. Gorman, III, R. C. Gorman, and M. S. Sacks. In vivo dynamic deformation of the mitral valve annulus. Ann. Biomed. Eng. 37:1757–1771, 2009.

    PubMed  Article  Google Scholar 

  14. 14.

    Einstein, D. R., F. Del Pin, X. M. Jiao, A. P. Kuprat, J. P. Carson, K. S. Kunzelman, R. P. Cochran, J. M. Guccione, and M. B. Ratcliffe. Fluid-structure interactions of the mitral valve and left heart: comprehensive strategies, past, present and future. Int. J. Numer. Methods Biomed. Eng. 26:348–380, 2010.

    Article  Google Scholar 

  15. 15.

    Enriquez-Sarano, M., C. W. Akins, and A. Vahanian. Mitral regurgitation. Lancet 373:1382–1394, 2009.

    PubMed  Article  Google Scholar 

  16. 16.

    Glasson, J. R., G. R. Green, J. F. Nistal, P. Dagum, M. Komeda, G. T. Daughters, A. F. Bolger, L. E. Foppiano, N. B. Ingels, Jr., and D. C. Miller. Mitral annular size and shape in sheep with annuloplasty rings. J. Thorac. Cardiovasc. Surg. 117:302–309, 1999.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Glasson, J. R., M. Komeda, G. T. Daughters, L. E. Foppiano, A. F. Bolger, T. L. Tye, N. B. Ingels, and C. Miller. Most ovine mitral annular three-dimensional size reduction occurs before ventricular systole and is abolished with ventricular pacing. Circulation 96:115–122, 1997.

    Google Scholar 

  18. 18.

    Glasson, J. R., M. K. Komeda, G. T. Daughters, M. A. Niczyporuk, A. F. Bolger, N. B. Ingels, and D. C. Miller. Three-dimensional regional dynamics of the normal mitral anulus during left ventricular ejection. J. Thorac. Cardiovasc. Surg. 111:574–585, 1996.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Goktepe, S., W. Bothe, J. P. Kvitting, J. C. Swanson, N. B. Ingels, D. C. Miller, and E. Kuhl. Anterior mitral leaflet curvature in the beating ovine heart: a case study using videofluoroscopic markers and subdivision surfaces. Biomech. Model. Mechanobiol. 9:281–293, 2010.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Gorman, III, J. H., K. B. Gupta, J. T. Streicher, R. C. Gorman, B. M. Jackson, M. B. Ratcliffe, D. K. Bogen, and L. H. Jr. Edmunds. Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J. Thorac. Cardiovasc. Surg. 112:712–726, 1996.

    PubMed  Article  Google Scholar 

  21. 21.

    Gorman, III, J. H., B. M. Jackson, Y. Enomoto, and R. C. Gorman. The effect of regional ischemia on mitral valve annular saddle shape. Ann. Thorac. Surg. 77:544–548, 2004.

    PubMed  Article  Google Scholar 

  22. 22.

    Jimenez, J. H., S. W. Liou, M. Padala, Z. He, M. Sacks, R. C. Gorman, J. H. Gorman, III, and A. P. Yoganathan. A saddle-shaped annulus reduces systolic strain on the central region of the mitral valve anterior leaflet. J. Thorac. Cardiovasc. Surg. 134:1562–1568, 2007.

    PubMed  Article  Google Scholar 

  23. 23.

    Jimenez, J. H., D. D. Soerensen, Z. M. He, S. Q. He, and A. P. Yoganathan. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study. Ann. Biomed. Eng. 31:1171–1181, 2003.

    PubMed  Article  Google Scholar 

  24. 24.

    Jimenez, J. H., D. D. Soerensen, Z. M. He, J. Ritchie, and A. P. Yoganathan. Mitral valve function and chordal force distribution using a flexible annulus model: an in vitro study. Ann. Biomed. Eng. 33:557–566, 2005.

    PubMed  Article  Google Scholar 

  25. 25.

    Jones, C. J., L. Raposo, and D. G. Gibson. Functional importance of the long axis dynamics of the human left ventricle. Br. Heart J. 63:215–220, 1990.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Kaplan, S. R., G. Bashein, F. H. Sheehan, M. E. Legget, B. Munt, X. N. Li, M. Sivarajan, E. L. Bolson, M. Zeppa, M. Z. Arch, and R. W. Martin. Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am. Heart J. 139:378–387, 2000.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Kheradvar, A., and M. Gharib. Influence of ventricular pressure drop on mitral annulus dynamics through the process of vortex ring formation. Ann. Biomed. Eng. 35:2050–2064, 2007.

    PubMed  Article  Google Scholar 

  28. 28.

    Kheradvar, A., and M. Gharib. On mitral valve dynamics and its connection to early diastolic flow. Ann. Biomed. Eng. 37:1–13, 2009.

    PubMed  Article  Google Scholar 

  29. 29.

    Kincaid, E. H., R. D. Riley, M. H. Hines, J. W. Hammon, and N. D. Kon. Anterior leaflet augmentation for ischemic mitral regurgitation. Ann. Thorac. Surg. 78:564–568, 2004; (discussion 568).

    PubMed  Article  Google Scholar 

  30. 30.

    Krishnamurthy, G., D. B. Ennis, A. Itoh, W. Bothe, J. C. Swanson, M. Karlsson, E. Kuhl, D. C. Miller, and N. B. Ingels Jr. Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis. Am. J. Physiol. Heart Circ. Physiol. 295:H1141–H1149, 2008.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Kunzelman, K. S., M. S. Reimink, and R. P. Cochran. Flexible versus rigid ring annuloplasty for mitral valve annular dilatation: a finite element model. J. Heart Valve Dis. 7:108–116, 1998.

    PubMed  CAS  Google Scholar 

  32. 32.

    Kvitting, J. P., W. Bothe, S. Goektepe, M. K. Rausch, J. C. Swanson, E. Kuhl, N. B. Ingels, and D. C. Miller. Anterior mitral leaflet curvature during the cardiac cycle in the normal ovine heart. Circulation 122:1683–1689, 2010.

    PubMed  Article  Google Scholar 

  33. 33.

    Kwan, J., T. Shiota, D. A. Agler, Z. B. Popovic, J. X. Qin, M. A. Gillinov, W. J. Stewart, D. M. Cosgrove, P. M. McCarthy, and J. D. Thomas. Geometric differences of the mitral apparatus between ischemic and dilated cardiomyopathy with significant mitral regurgitation: real-time three-dimensional echocardiography study. Circulation 107:1135–1140, 2003.

    PubMed  Article  Google Scholar 

  34. 34.

    Lansac, E., K. H. Lim, Y. Shomura, W. A. Goetz, H. S. Lim, N. T. Rice, H. Saber, and C. M. Duran. Dynamic balance of the aortomitral junction. J. Thorac. Cardiovasc. Surg. 123:911–918, 2002.

    PubMed  Article  Google Scholar 

  35. 35.

    Lantada, A. D., R. Del Valle-Fernandez, P. L. Morgado, J. Munoz-Garcia, J. L. M. Sanz, J. M. Munoz-Guijosa, and J. E. Otero. Development of personalized annuloplasty rings: combination of ct images and CAD-CAM tools. Ann. Biomed. Eng. 38:280–290, 2010.

    Article  Google Scholar 

  36. 36.

    Legget, M. E., G. Bashein, J. A. McDonald, B. I. Munt, R. W. Martin, C. M. Otto, and F. H. Sheehan. Three-dimensional measurement of the mitral annulus by multiplane transesophageal echocardiography: in vitro validation and in vivo demonstration. J. Am. Soc. Echocardiogr. 11:188–200, 1998.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Levine, R. A., M. D. Handschumacher, A. J. Sanfilippo, A. A. Hagege, P. Harrigan, J. E. Marshall, and A. E. Weyman. Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation 80:589–598, 1989.

    PubMed  CAS  Google Scholar 

  38. 38.

    Levine, R. A., M. O. Triulzi, P. Harrigan, and A. E. Weyman. The relationship of mitral annular shape to the diagnosis of mitral valve prolapse. Circulation 75:756–767, 1987.

    PubMed  CAS  Google Scholar 

  39. 39.

    Niczyporuk, M. A., and D. C. Miller. Automatic tracking and digitization of multiple radiopaque myocardial markers. Comput. Biomed. Res. 24:129–142, 1991.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Oliveira, J. M., and M. J. Antunes. Mitral valve repair: better than replacement. Heart 92:275–281, 2006.

    PubMed  Article  Google Scholar 

  41. 41.

    Ormiston, J. A., P. M. Shah, C. Tei, and M. Wong. Size and motion of the mitral valve annulus in man. I. A two-dimensional echocardiographic method and findings in normal subjects. Circulation 64:113–120, 1981.

    PubMed  CAS  Google Scholar 

  42. 42.

    Padala, M., R. A. Hutchison, L. R. Croft, J. H. Jimenez, R. C. Gorman, J. H. Gorman, III, M. S. Sacks, and A. P. Yoganathan. Saddle shape of the mitral annulus reduces systolic strains on the P2 segment of the posterior mitral leaflet. Ann. Thorac. Surg. 88:1499–1504, 2009.

    PubMed  Article  Google Scholar 

  43. 43.

    Pai, R. G., M. M. Bodenheimer, S. M. Pai, J. H. Koss, and R. D. Adamick. Usefulness of systolic excursion of the mitral anulus as an index of left ventricular systolic function. Am. J. Cardiol. 67:222–224, 1991.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Rausch, M. K., W. Bothe, J. P. Kvitting, S. Goektepe, D. C. Miller, and E. Kuhl. In vivo dynamic strains of the entire ovine anterior mitral valve leaflet. J. Biomech. 2011. doi:10.1016/j.jbiomech.2011.01.020

  45. 45.

    Salgo, I. S., J. H. Gorman, III, R. C. Gorman, B. M. Jackson, F. W. Bowen, T. Plappert, M. G. St John Sutton, L. H. Edmunds Jr., et al. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106:711–717, 2002.

    PubMed  Article  Google Scholar 

  46. 46.

    Stevanella, M., E. Votta, and A. Redaelli. Mitral valve finite element modeling: implications of tissues’ nonlinear response and annular motion. J. Biomech. Eng. Trans. ASME 131:121010-1–121010-9, 2009.

    Google Scholar 

  47. 47.

    Tamura, K., M. Murakami, and M. Washizu. Healing of wound sutures on the mitral valve: an experimental study. Gen. Thorac. Cardiovasc. Surg. 55:98–104, 2007.

    PubMed  Article  Google Scholar 

  48. 48.

    Timek, T. A., P. Dagum, D. T. Lai, D. Liang, G. T. Daughters, F. Tibayan, N. B. Ingels, Jr., and D. C. Miller. Tachycardia-induced cardiomyopathy in the ovine heart: mitral annular dynamic three-dimensional geometry. J. Thorac. Cardiovasc. Surg. 125:315–324, 2003.

    PubMed  Article  Google Scholar 

  49. 49.

    Tsakiris, A. G., G. Von Bernuth, G. C. Rastelli, M. J. Bourgeois, J. L. Titus, and E. H. Wood. Size and motion of the mitral valve annulus in anesthetized intact dogs. J. Appl. Physiol. 30:611–618, 1971.

    PubMed  CAS  Google Scholar 

  50. 50.

    Votta, E., F. Maisano, M. Soncini, A. Redaelli, F. M. Montevecchi, and O. Alfieri. 3-D computational analysis of the stress distribution on the leaflets after edge-to-edge repair of mitral regurgitation. J. Heart Valve Dis. 11:810–822, 2002.

    PubMed  Google Scholar 

  51. 51.

    Watanabe, N., Y. Ogasawara, Y. Yamaura, N. Wada, T. Kawamoto, E. Toyota, T. Akasaka, and K. Yoshida. Mitral annulus flattens in ischemic mitral regurgitation: geometric differences between inferior and anterior myocardial infarction: a real-time 3-dimensional echocardiographic study. Circulation 112:I458–I462, 2005.

    PubMed  Article  Google Scholar 

  52. 52.

    Wenk, J. F., Z. H. Zhang, G. M. Cheng, D. Malhotra, G. Acevedo-Bolton, M. Burger, T. Suzuki, D. A. Saloner, A. W. Wallace, J. M. Guccione, and M. B. Ratcliffe. First finite element model of the left ventricle with mitral valve: insights into ischemic mitral regurgitation. Ann. Thorac. Surg. 89:1546–1554, 2010.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We thank Paul Chang, Eleazar P. Briones, Lauren R. Davis, and Kathy N. Vo for technical assistance, Maggie Brophy and Sigurd Hartnett for careful marker image digitization, and George T. Daughters III for computation of 4D data from biplane 2D marker coordinates. This work was supported in part by the US National Science Foundation grant CAREER award CMMI-0952021 to Ellen Kuhl, by US National Institutes of Health grants R01 HL29589 and R01 HL67025 to D. Craig Miller, by the Deutsche Herzstiftung, Frankfurt, Germany, Research Grant S/06/07 to Wolfgang Bothe, by the U.S.- Norway Fulbright Foundation, the Swedish Heart-Lung Foundation, and the Swedish Society for Medical Research to John-Peder Escobar Kvitting, and by the Western States Affiliate American Heart Association Fellowship to Julia C. Swanson.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ellen Kuhl.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 767 kb)

Supplementary material 2 (MP4 729 kb)

Supplementary material 3 (MP4 798 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rausch, M.K., Bothe, W., Kvitting, JP.E. et al. Characterization of Mitral Valve Annular Dynamics in the Beating Heart. Ann Biomed Eng 39, 1690–1702 (2011). https://doi.org/10.1007/s10439-011-0272-y

Download citation

Keywords

  • Mitral regurgitation
  • Mitral valve
  • Annulus
  • Dynamics
  • Strain
  • Curvature
  • Splines