Skip to main content
Log in

Correlation Between Local Hemodynamics and Lesion Distribution in a Novel Aortic Regurgitation Murine Model of Atherosclerosis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Following surgical induction of aortic valve regurgitation (AR), extensive atherosclerotic plaque development along the descending thoracic and abdominal aorta of Ldlr / mice has been reported, with distinct spatial distributions suggestive of a strong local hemodynamic influence. The objective of this study was to test, using image-based computational fluid dynamics (CFD), whether this is indeed the case. The lumen geometry was reconstructed from micro-CT scanning of a control Ldlr −/− mouse, and CFD simulations were carried out for both AR and control flow conditions derived from Doppler ultrasound measurements and literature data. Maps of time-averaged wall shear stress magnitude (TAWSS), oscillatory shear index (OSI) and relative residence time (RRT) were compared against the spatial distributions of plaque stained with oil red O, previously acquired in a group of AR and control mice. Maps of OSI and RRT were found to be consistent with plaque distributions in the AR mice and the absence of plaque in the control mice. TAWSS was uniformly lower under control vs. AR flow conditions, suggesting that levels (>100 dyn/cm2) exceeded those required to alone induce a pro-atherogenic response. Simulations of a straightened CFD model confirmed the importance of anatomical curvature for explaining the spatial distribution of lesions in the AR mice. In summary, oscillatory and retrograde flow induced in the AR mice, without concomitant low shear, may exacerbate or accelerate lesion formation, but the distinct anatomical curvature of the mouse aorta is responsible for the spatial distribution of lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Antiga, L., M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi, and D. A. Steinman. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46:1097–1112, 2008.

    Article  PubMed  Google Scholar 

  2. Berk, B. C., J. I. Abe, W. Min, J. Surapisitchat, and C. Yan. Endothelial atheroprotective and anti-inflammatory mechanisms. Ann. N. Y. Acad. Sci. 947:93–109, 2001; (discussion 109–111).

    Article  PubMed  CAS  Google Scholar 

  3. Caro, C. G. Discovery of the role of wall shear in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 29:158–161, 2009.

    Article  PubMed  CAS  Google Scholar 

  4. Cheng, C., F. Helderman, D. Tempel, D. Segers, B. Hierck, R. Poelmann, A. van Tol, D. J. Duncker, D. Robbers-Visser, N. T. Ursem, R. van Haperen, J. J. Wentzel, F. Gijsen, A. F. van der Steen, R. de Crom, and R. Krams. Large variations in absolute wall shear stress levels within one species and between species. Atherosclerosis 195:225–235, 2007.

    Article  PubMed  CAS  Google Scholar 

  5. Cheng, C., D. Tempel, R. van Haperen, A. van der Baan, F. Grosveld, M. J. Daemen, R. Krams, and R. de Crom. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113:2744–2753, 2006.

    Article  PubMed  Google Scholar 

  6. Ethier, C. R., S. Prakash, D. A. Steinman, R. L. Leask, G. G. Couch, and M. Ojha. Steady flow separation patterns in a 45 degree junction. J. Fluid Mech. 411:1–38, 2000.

    Article  Google Scholar 

  7. Feintuch, A., P. Ruengsakulrach, A. Lin, J. Zhang, Y. Q. Zhou, J. Bishop, L. Davidson, D. Courtman, F. S. Foster, D. A. Steinman, R. M. Henkelman, and C. R. Ethier. Hemodynamics in the mouse aortic arch as assessed by MRI, ultrasound, and numerical modeling. Am. J. Physiol. Heart Circ. Physiol. 292:H884–H892, 2007.

    Article  PubMed  CAS  Google Scholar 

  8. Greve, J. M., A. S. Les, B. T. Tang, M. T. Draney Blomme, N. M. Wilson, R. L. Dalman, N. J. Pelc, and C. A. Taylor. Allometric scaling of wall shear stress from mice to humans: quantification using cine phase-contrast MRI and computational fluid dynamics. Am. J. Physiol. Heart Circ. Physiol. 291:H1700–H1708, 2006.

    Article  PubMed  CAS  Google Scholar 

  9. Himburg, H. A., D. M. Grzybowski, A. L. Hazel, J. A. LaMack, X. M. Li, and M. H. Friedman. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am. J. Physiol. Heart Circ. Physiol. 286:H1916–H1922, 2004.

    Article  PubMed  CAS  Google Scholar 

  10. Huo, Y., X. Guo, and G. S. Kassab. The flow field along the entire length of mouse aorta and primary branches. Ann. Biomed. Eng. 36:685–699, 2008.

    Article  PubMed  Google Scholar 

  11. Ishibashi, S., M. S. Brown, J. L. Goldstein, R. D. Gerard, R. E. Hammer, and J. Herz. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92:883–893, 1993.

    Article  PubMed  CAS  Google Scholar 

  12. Jin, S., J. Oshinski, and D. P. Giddens. Effects of wall motion and compliance on flow patterns in the ascending aorta. J. Biomech. Eng. 125:347–354, 2003.

    Article  PubMed  Google Scholar 

  13. Knight, J., U. Olgac, S. C. Saur, D. Poulikakos, W. Marshall, Jr., P. C. Cattin, H. Alkadhi, and V. Kurtcuoglu. Choosing the optimal wall shear parameter for the prediction of plaque location-A patient-specific computational study in human right coronary arteries. Atherosclerosis 211:445–450, 2010.

    Article  PubMed  CAS  Google Scholar 

  14. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293–302, 1985.

    PubMed  CAS  Google Scholar 

  15. Lee, S. W., L. Antiga, and D. A. Steinman. Correlations among indicators of disturbed flow at the normal carotid bifurcation. J. Biomech. Eng. 131:061013, 2009.

    Google Scholar 

  16. Libby, P. Inflammation in atherosclerosis. Nature 420:868–874, 2002.

    Article  PubMed  CAS  Google Scholar 

  17. Libby, P., P. M. Ridker, and A. Maseri. Inflammation and atherosclerosis. Circulation 105:1135–1143, 2002.

    Article  PubMed  CAS  Google Scholar 

  18. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.

    Article  PubMed  CAS  Google Scholar 

  19. Minev, P. D., and C. R. Ethier. A characteristic/finite element algorithm for the 3-D Navier–Stokes equations using unstructured grids. Comput. Methods Appl. Mech. Eng. 178:39–50, 1998.

    Article  Google Scholar 

  20. Moore, J. E., Jr., S. E. Maier, D. N. Ku, and P. Boesiger. Hemodynamics in the abdominal aorta: a comparison of in vitro and in vivo measurements. J. Appl. Physiol. 76:1520–1527, 1994.

    PubMed  Google Scholar 

  21. Plump, A. S., J. D. Smith, T. Hayek, K. Aalto-Setala, A. Walsh, J. G. Verstuyft, E. M. Rubin, and J. L. Breslow. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71:343–353, 1992.

    Article  PubMed  CAS  Google Scholar 

  22. Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340:115–126, 1999.

    Article  PubMed  CAS  Google Scholar 

  23. Suo, J., D. E. Ferrara, D. Sorescu, R. E. Guldberg, W. R. Taylor, and D. P. Giddens. Hemodynamic shear stresses in mouse aortas: implications for atherogenesis. Arterioscler. Thromb. Vasc. Biol. 27:346–351, 2007.

    Article  PubMed  CAS  Google Scholar 

  24. Thijssen, D. H., E. A. Dawson, T. M. Tinken, N. T. Cable, and D. J. Green. Retrograde flow and shear rate acutely impair endothelial function in humans. Hypertension 53:986–992, 2009.

    Article  PubMed  CAS  Google Scholar 

  25. Tozer, E. C., and T. E. Carew. Residence time of low-density lipoprotein in the normal and atherosclerotic rabbit aorta. Circ. Res. 80:208–218, 1997.

    PubMed  CAS  Google Scholar 

  26. Trachet, B., A. Swillens, D. Van Loo, C. Casteleyn, A. De Paepe, B. Loeys, and P. Segers. The influence of aortic dimensions on calculated wall shear stress in the mouse aortic arch. Comput. Methods Biomech. Biomed. Eng. 12:491–499, 2009.

    Article  Google Scholar 

  27. Weinberg, P. D., and C. Ross Ethier. Twenty-fold difference in hemodynamic wall shear stress between murine and human aortas. J. Biomech. 40:1594–1598, 2007.

    Article  PubMed  Google Scholar 

  28. Willett, N. J., R. C. Long, Jr., K. Maiellaro-Rafferty, R. L. Sutliff, R. Shafer, J. N. Oshinski, D. P. Giddens, R. E. Guldberg, and W. R. Taylor. An in vivo murine model of low-magnitude oscillatory wall shear stress to address the molecular mechanisms of mechanotransduction—brief report. Arterioscler. Thromb. Vasc. Biol. 30:2099–2102, 2010.

    Article  PubMed  CAS  Google Scholar 

  29. Williams, K. J., and I. Tabas. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 15:551–561, 1995.

    PubMed  CAS  Google Scholar 

  30. Williams, K. J., and I. Tabas. Atherosclerosis and inflammation. Science 297:521–522, 2002.

    Article  PubMed  CAS  Google Scholar 

  31. Zhou, Y. Q., L. Davidson, R. M. Henkelman, B. J. Nieman, F. S. Foster, L. X. Yu, and X. J. Chen. Ultrasound-guided left-ventricular catheterization: a novel method of whole mouse perfusion for microimaging. Lab Invest. 84:385–389, 2004.

    Article  PubMed  Google Scholar 

  32. Zhou, Y. Q., F. S. Foster, B. J. Nieman, L. Davidson, X. J. Chen, and R. M. Henkelman. Comprehensive transthoracic cardiac imaging in mice using ultrasound biomicroscopy with anatomical confirmation by magnetic resonance imaging. Physiol. Genomics 18:232–244, 2004.

    Article  PubMed  Google Scholar 

  33. Zhou, Y. Q., S. N. Zhu, F. S. Foster, M. I. Cybulsky, and R. M. Henkelman. Aortic regurgitation dramatically alters the distribution of atherosclerotic lesions and enhances atherogenesis in mice. Arterioscler. Thromb. Vasc. Biol. 30:1181–1188, 2010.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Lisa Yu for the micro-CT scanning. This work is part of the Mouse Imaging Centre at the Hospital for Sick Children and the University of Toronto. The infrastructure was funded by the Canada Foundation for Innovation and Ontario Innovation Trust. The research was funded by a CIHR Grant (102590), and the Heart and Stroke Foundation of Ontario (Grants T6107 and T6060). R.M.H. holds a Canada Research Chair. Y.H. and D.A.S. acknowledge the support of a Heart & Stroke Foundation Research Fellowship Award and Career Investigator Award, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Steinman.

Additional information

Associate Editor Joan Greve oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoi, Y., Zhou, YQ., Zhang, X. et al. Correlation Between Local Hemodynamics and Lesion Distribution in a Novel Aortic Regurgitation Murine Model of Atherosclerosis. Ann Biomed Eng 39, 1414–1422 (2011). https://doi.org/10.1007/s10439-011-0255-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0255-z

Keywords

Navigation