Skip to main content
Log in

Fluid Dynamics Analysis of a Novel Micropatterned Cell Bioreactor

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Although flow-based bioreactor has been widely used to provide sufficient mass transportation and nutrient supply for cell proliferation, differentiation, and apoptosis, the underlying mechanism of cell responses to applied flow at single cell level remains unclear. This study has developed a novel bioreactor that combines flow bioreactor with microfabrication technique to isolate individual cells onto micropatterned substrate. A mechanical model has also been developed to quantify the flow field or the microenvironment around the single cell; flow dynamics has been analyzed on five geometrically different patterns of circle-, cube-, 1:2 ellipse-, 1:3 ellipse-, and rectangle-shaped “virtual cells.” The results of this study have demonstrated that the flow field is highly pattern dependent, and all the hydrodynamic development length, cell spacing, and orientation of inlet velocity vector are crucial for maintaining a fully developed flow. This study has provided a theoretical basis for optimizing the design of micropatterned flow bioreactor and a novel approach to understand the cell mechanotransduction and cell–surface interaction at single cell level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

a, b, h:

Length, width, height of an isolated cell

ATR:

Active test region

(c − a)/a = (d  b)/b :

Spacing ratio

c, d:

Length, width of an unit

D :

Hydrodynamic diameter (=2WH/(W + H))

F b :

Body force per unit mass

L, W, H:

Length, width, height of a flow chamber

Linlet, Loutlet, Lwall:

Inlet, outlet, wall length of a flow chamber

Linlet/D, Loutlet/D, Lwall/D:

Non-dimensional hydrodynamic development inlet, outlet, wall length in a micropatterned flow chamber

\( L^{\prime}_{\text{inlet}} \), \( L^{\prime}_{\text{outlet}} \), \( L^{\prime}_{\text{wall}} \):

Applied inlet, outlet, wall length in a flow chamber when the computation is need

p :

Pressure of flow field

p t :

Relative pressure

Q :

Flow flux of flowing fluid

Re :

Reynolds number

u :

Velocity vector of flowing fluid

α, β, γ:

Non-dimensional hydrodynamic development lengths of inlet, outlet, wall in a cell seeded flow chamber

Θ, ∇:

Substantive derivative, vector differential operator

μ :

Dynamic viscosity of flowing fluid

ρ :

Mass density of flowing fluid

References

  1. Arnsdorf, E. J., P. Tummala, R. Y. Kwon, and C. R. Jacobs. Mechanically induced osteogenic differentiation—the role of RhoA, ROCKII and cytoskeletal dynamics. J. Cell Sci. 122:546–553, 2009.

    Article  PubMed  CAS  Google Scholar 

  2. Atkinson, B., Mp. Brockleb, C. C. H. Card, and J. M. Smith. Low Reynolds number developing flows. AIChE J. 15(4):548–553, 1969.

    Article  CAS  Google Scholar 

  3. Bao, X., C. Lu, and J. A. Frangos. Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: role of NO, NF kappa B, and egr-1. Arterioscler. Thromb. Vasc. Biol. 19(4):996–1003, 1999.

    PubMed  CAS  Google Scholar 

  4. Boschetti, F., M. T. Raimondi, F. Migliavacca, and G. Dubini. Prediction of the micro-fluid dynamic environment imposed to three-dimensional engineered cell systems in bioreactors. J. Biomech. 39(3):418–425, 2006.

    PubMed  Google Scholar 

  5. Butcher, J., and R. M. Nerem. Valvular endothelial cells regulate the phenotype of interstitial cells in co-culture: effects of steady shear stress. Tiss. Eng. 12(4):905–915, 2006.

    Article  CAS  Google Scholar 

  6. Chen, R. Y. Flow in entrance region at low Reynolds-numbers. J. Fluid Eng.-T ASME 95(1):153–158, 1973.

    Article  Google Scholar 

  7. Chen, C. S., J. L. Alonso, E. Ostuni, G. M. Whitesides, and D. E. Ingber. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307(2):355–361, 2003.

    Article  PubMed  CAS  Google Scholar 

  8. Chotard-Ghodsnia, R., O. Haddad, A. Leyrat, A. Drochon, C. Verdier, and A. Duperray. Morphological analysis of tumor cell/endothelial cell interactions under shear flow. J. Biomech. 40(2):335–344, 2007.

    Article  PubMed  Google Scholar 

  9. Chung, B. J., A. M. Robertson, and D. G. Peters. The numerical design of a parallel plate flow chamber for investigation of endothelial cell response to shear stress. Comput. Struct. 81(8−11):535–546, 2003.

    Article  Google Scholar 

  10. Cioffi, M., F. Boschetti, M. T. Raimondi, and G. Dubini. Modeling evaluation of the fluid-dynamic microenvironment in tissue-engineered constructs: a micro-CT based model. Biotechnol. Bioeng. 93(3):500–510, 2006.

    Article  PubMed  CAS  Google Scholar 

  11. Cioffi, M., J. Kuffer, S. Strobel, G. Dubini, I. Martin, and D. Wendt. Computational evaluation of oxygen and shear stress distributions in 3D perfusion culture systems: macro-scale and micro-structured models. J. Biomech. 41(14):2918–2925, 2008.

    Article  PubMed  CAS  Google Scholar 

  12. Davies, P. F. Flow-mediated endothelial mechanotransduction. Phys. Rev. 75(3):519–560, 1995.

    CAS  Google Scholar 

  13. De Paola, N., M. A. Gimbrone, Jr., P. F. Davies, and C. F. Dewey, Jr. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. Vasc. Biol. 12(11):1254–1257, 1992.

    Google Scholar 

  14. Fritton, S. P., and S. Weinbaum. Fluid and solute transport in bone: flow-induced mechanotransduction. Annu. Rev. Fluid Mech. 41:347–374, 2009.

    Article  PubMed  Google Scholar 

  15. Fung, Y. C., and S. Q. Liu. Elementary mechanics of the endothelium of blood vessels. J. Biomech. Eng. 115(1):1–12, 1993.

    Article  PubMed  CAS  Google Scholar 

  16. Huo, B., X. L. Lu, C. T. Hung, K. D. Costa, Q. B. Xu, G. M. Whitesides, and X. E. Guo. Fluid flow induced calcium response in bone cell network. Cell. Mol. Bioeng. 1:58–66, 2008.

    Article  PubMed  CAS  Google Scholar 

  17. Kadohama, T., K. Nishimura, Y. Hoshino, T. Sasajimaand, and B. E. Sumpio. Effects of different types of fluid shear stress on endothelial cell proliferation and survival. J. Cell. Physiol. 212(1):244–251, 2007.

    Article  PubMed  CAS  Google Scholar 

  18. Khismatullin, D. B., and G. A. Truskey. A 3D numerical study of the effect of channel height on leukocyte deformation and adhesion in parallel-plate flow chambers. Microvasc. Res. 68(3):188–202, 2004.

    Article  PubMed  Google Scholar 

  19. Leclerc, E., B. David, L. Griscom, B. Lepioufle, T. Fujii, P. Layrolle, and C. Legallaisa. Study of osteoblastic cells in a microfluidic environment. Biomaterials 27(4):586–595, 2006.

    Article  PubMed  CAS  Google Scholar 

  20. Levitan, I., B. P. Helmke, and P. F. Davies. A chamber to permit invasive manipulation of adherent cells in laminar flow with minimal disturbance of the flow field. Ann. Biomed. Eng. 28(10):1184–1193, 2000.

    Article  PubMed  CAS  Google Scholar 

  21. Li, D., T. Tang, J. Lu, and K. Dai. Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor. Tiss. Eng. A 15(10):2773–2783, 2009.

    Article  CAS  Google Scholar 

  22. Liu, S. Q., M. Yen, and Y. C. Fung. On measuring the third dimension of cultured endothelial cells in shear flow. Proc. Nat. Acad. Sci. 91(19):8782–8786, 1994.

    Article  PubMed  CAS  Google Scholar 

  23. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. J. Am. Med. Assoc. 282(21):2035–2042, 1999.

    Article  CAS  Google Scholar 

  24. Mattiussi, S., C. Lazzari, S. Truffa, A. Antonini, S. Soddu, M. C. Capogrossi, and C. Gaetano. Homeodomain interacting protein kinase 2 activation compromises endothelial cell response to laminar flow: protective role of p21(waf1,cip1,sdi1). PLoS ONE 4(8):e6603, 2009.

    Google Scholar 

  25. Morton, K. W., and E. Suli. Finite volume methods and their analysis. IMA J. Numer. Anal. 11(2):241–260, 1991.

    Article  Google Scholar 

  26. Myong, H. K., and T. Kobayashi. Prediction of 3-dimensional developing turbulent-flow in a square duct with an anisotropic low-Reynolds-number Kappa-Epsilon Model. J. Fluid Eng.-T ASME 113(4):608–615, 1991.

    Article  CAS  Google Scholar 

  27. Provin, C., K. Takano, Y. Sakai, T. Fujii, and R. Shirakashi. A method for the design of 3D scaffolds for high-density cell attachment and determination of optimum perfusion culture conditions. J. Biomech. 41:1436–1449, 2008.

    Article  PubMed  Google Scholar 

  28. Rangaswami, H., N. Marathe, S. Zhuang, Y. Chen, J. C. Yeh, J. A. Frangos, G. R. Boss, and R. B. Pilz. Type II cGMP-dependent protein kinase mediates osteoblast mechanotransduction. J. Biol. Chem. 284(22):14796–14808, 2009.

    Article  PubMed  CAS  Google Scholar 

  29. Robinson, A. J., D. Kashanin, F. O’Dowd, K. Fitzgerald, V. Williams, and G. M. Walsh. Fluvastatin and lovastatin inhibit granulocyte macrophage-colony stimulating factor-stimulated human eosinophil adhesion to inter-cellular adhesion molecule-1 under flow conditions. Clin. Exp. Allergy 39(12):1866–1874, 2009.

    Article  PubMed  CAS  Google Scholar 

  30. Sandino, C., J. A. Planell, and D. Lacroix. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J. Biomech. 41(5):1005–1014, 2008.

    Article  PubMed  CAS  Google Scholar 

  31. Su, S. S., and G. W. Schmid-Schonbein. Internalization of formyl peptide receptor in leukocytes subject to fluid stresses. Cell. Mol. Bioeng. 3:20–29, 2010.

    Article  PubMed  Google Scholar 

  32. Sun, S. J., Y. X. Gao, N. J. Shu, Z. M. Tang, Z. L. Tao, and M. Long. A novel counter sheet-flow sandwich cell culture device for mammalian cell growth in space. Microgravity Sci. Technol. 20(2):115–120, 2008.

    Article  CAS  Google Scholar 

  33. Sun, H., C. K. Aidun, and U. Egertsdotter. Effects from shear stress on morphology and growth of early stages of Norway spruce somatic embryos. Biotechnol. Bioeng. 105(3):588–599, 2009.

    Article  Google Scholar 

  34. Swartz, M. A., and M. E. Fleury. Interstitial flow and its effects in soft tissues. Annu. Rev. Biomed. Eng. 9:229–256, 2007.

    Article  PubMed  CAS  Google Scholar 

  35. Szymanski, M. P., E. Metaxa, H. Meng, and J. Kolega. Endothelial cell layer subjected to impinging flow mimicking the apex of an arterial bifurcation. Ann. Biomed. Eng. 36(10):1681–1689, 2008.

    Article  PubMed  Google Scholar 

  36. ASME Steam Tables, 3rd ed., Am Soc Mech Engrs, 1977.

  37. Webb, R. L. Single-phase heat transfer, friction, and fouling characteristics of three-dimensional cone roughness in tube flow. Int. J. Heat Mass Transf. 52:2624–2631, 2009.

    Article  CAS  Google Scholar 

  38. Webb, R. L., and N. H. Kim. Principles of Enhanced Heat Transfer, 2nd ed. New York: Taylor & Francis, 2005.

  39. Wu, W. Y., and H. Mei. The oseen flow of finite clusters of spheres and the wake effect on the drag factor. Acta Mech. Sinica 2(4):289–304, 1986.

    Article  Google Scholar 

  40. You, L., S. Temiyasthit, S. R. Coyer, A. J. García, and C. R. Jacobs. Bone cells grown on micropatterned surfaces are more sensitive to fluid shear stress. Cell. Mol. Bioeng. 1:182–188, 2008.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Xin Wang, Yunfeng Wu, and Yabin Zhai for computational assistance. This study was supported by the following grants: the Natural Science Foundation of China, #30730032 and #30870606; Knowledge Innovation Program of CAS, #KJCX2-YW-L08; the National Key Basic Research Foundation of China, #2006CB910303; and the National High Technology Research and Development Program of China, #2007AA02Z306.

Conflict of interest statement

No conflict of interested is assigned to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mian Long.

Additional information

Associate Editor Tingrui Pan oversaw the review of this article.

Yuhong Cui and Bo Huo contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Huo, B., Sun, S. et al. Fluid Dynamics Analysis of a Novel Micropatterned Cell Bioreactor. Ann Biomed Eng 39, 1592–1605 (2011). https://doi.org/10.1007/s10439-011-0250-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0250-4

Keywords

Navigation