Abstract
A realistic outflow boundary condition model for pulsatile flow in a compliant vessel is studied by taking into account physiological effects: compliance, resistance, and wave reflection of the downstream vasculature. The new model extends the computational domain with an elastic tube terminated in a rigid contraction. The contraction ratio, the length, and elasticity of the terminal tube can be adjusted to represent effects of the truncated vasculature. Using the wave intensity analysis method, we apply the model to the test cases of a straight vessel and the aorta and find good agreement with the physiological characteristics of blood flow and pressure. The model is suitable for cardiac transient (non-periodic) events and easily employed using so-called black box software.
Similar content being viewed by others
References
ADINA R&D, Inc. Theory and Modeling Guide, Volume I: ADINA Solids & Structures, 2009.
ADINA R&D, Inc. Theory and Modeling Guide, Volume III: ADINA CFD & FSI, 2009.
Anliker, M., R. L. Rockwell, and E. Ogden. Nonlinear analysis of flow pulses and shock waves in arteries. Z. Angew. Math. Phys. 22:217–246, 1971.
Avolio, A. Aging and wave reflection. J. Hypertens. 10:S83–S86, 1992.
Bathe, K. J. Finite Element Procedures. Englewood Cliffs, NJ: Prentice-Hall, 2006.
Bathe, M., and R. D. Kamm. A fluid–structure interaction finite element analysis of pulsatile blood flowthrough a compliant stenotic artery. J. Biomech. Eng. Trans. ASME 121:361–369, 1999.
Bathe, K.-J., and H. Zhang. Finite element developments for general fluid flows with structural interactions. Int. J. Numer. Methods Eng. 60(1):213–232, 2004.
Bathe, K. J., H. Zhang, and M. H. Wang. Finite element analysis of incompressible and compressible fluid flows with free surfaces and structural interactions. Comput. Struct. 56:193–213, 1995.
Bathe, K. J., H. Zhang, and X. Zhang. Some advances in the analysis of fluid flows. Comput. Struct. 64:909–930, 1997.
Bathe, K. J., H. Zhang, and S. Ji. Finite element analysis of fluid flows fully coupled with structural interactions. Comput. Struct. 72:1–16, 1999.
Caro, C. G., T. J. Pedley, R. C. Schroter, and W. A. Seed. The Mechanics of the Circulation. Oxford, UK: Oxford University Press, 1978.
De Pater, L., and J. W. van den Berg. An electrical analog of the human circulatory system. Acta Physiol. Pharma. Neerl. 11:511–512, 1962.
Franklin, S. S., and M. A. Weber. Measuring hypertensive cardiovascular risk: the vascular overload concept. Am. Heart J. 128:793–803, 1994.
Fung, Y. C. Biomechanics Circulation (2nd ed.). New York: Springer, 1997.
Grinberg, L., and G. E. Karniadakis. Outflow boundary conditions for arterial networks with multiple outlets. Ann. Biomed. Eng. 36:1496–1514, 2008.
Khir, A. W., A. B. O’Brien, J. S. R. Gibbs, and K. H. Parker. Determination of wave speed and wave separation in the arteries. J. Biomech. 34:1145–1155, 2001.
Koh, T. W., J. R. Pepper, A. C. DeSouza, and K. H. Parker. Analysis of wave reflections in the arterial system using wave intensity: a novel method for predicting the timing and amplitude of reflected waves. Heart Vessels 13:103–113, 1998.
Laskey, W. K., and W. G. Kussmaul. Arterial wave reflection in heart failure. Circulation 75:711–722, 1987.
Laurent, S., P. Boutouyrie, R. Asmar, I. Gautier, B. Laloux, L. Guize, P. Ducimetiere, and A. Benetos. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 37:1236–1241, 2001.
London, G., J. Blacher, B. Pannier, A. P. Guerin, S. J. Marchais, and M. E. Safar. Arterial wave reflections and survival in end-stage renal failure. Hypertension 38:434–438, 2001.
Matthys, K. S., J. Alastruey, J. Piero, A. W. Khir, P. Segers, P. R. Verdonck, K. H. Parker, and S. J. Sherwin. Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulation against in vitro measurements. J. Biomech. 40(15):3476–3486, 2007.
Milnor, W. R. Haemodynamics. Baltimore, London: William & Wilson, p. 419, 1982.
Mitchell, G. F., J. C. Tardif, J. M. Arnold, G. Marchiori, T. X. O’Brien, M. E. Dunlap, and M. A. Pfeffer. Pulsatile hemodynamics in congestive heart failure. Hypertension 38:1433–1439, 2001.
Nichols, W. W., and M. F. O’Rourke. McDonald’s Blood Flow in Arteries (4th ed.). London: Arnold, The Hodder Headline Group Publication, p. 564, 1998.
Noordergraaf, A., P. D. Verdouw, and H. B. K. Boom. The use of an analog computer in a circulation model. Prog. Cardiovasc. Dis. 5:419–439, 1963.
O’Rourke, M. F., and W. W. Nichols. Aortic diameter, aortic stiffness, and wave reflection increase with age and isolated systolic hypertension. Hypertension 45:652–658, 2005.
Olufsen, M. Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. 276:H257–H268, 1999.
Parker, K. H., and C. J. H. Jones. Forward and backward running waves in the arteries: analysis using the method of characteristics. J. Biomech. Eng. 112:322–332, 1990.
Parker, K. H., C. J. H. Jones, J. R. Dawson, and D. G. Gibson. What stops the flow of blood from the heart? Heart Vessels 4:241–245, 1998.
Schaff, B. W., and P. A. Abbrecht. Digital computer simulation of human systemic arterial pulse wave transmission: a nonlinear model. J. Biomech. 5:345–364, 1972.
Self, D. A., D. L. Ewert, R. D. Swope, R. P. Crisman, and R. D. Latham. Beat-to-beat determination of peripheral resistance and arterial compliance during +Gz centrifugation. Aviat. Space Environ. Med. 65(5):396–403, 1994.
Sherwin, S. J., V. Franke, J. Peiro, and K. Parker. One dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 47(3–4):217–250, 2003.
Stergiopulos, N., D. F. Young, and T. R. Rogge. Computer simulation of arterial flow with applications to arterial and aortic stenosis. J. Biomech. 25:1477–1488, 1992.
Stergiopulos, N., J. J. Meister, and N. Westerhof. Simple and accurate estimating total and segmental arterial compliance: the pulse pressure method. Ann. Biomed. Eng. 22:392–397, 1994.
Stergiopulos, N., J. J. Meister, and N. Westerhof. Evaluation of methods for estimation of total arterial compliance. Am. J. Physiol. Heart Circ. Physiol. 268:H1540–H1548, 1995.
Taylor, C. A., M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang, and C. K. Zarins. Predictive medicine: computational techniques in therapeutic decision making. Comput. Aided Surg. 4:231–247, 1999.
Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary condition for three-dimensional finite element modeling of blood flow and pressure in arteries. Comp. Methods Appl. Mech. Eng. 195:3776–3796, 2006.
Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary condition for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput. Methods Biomech. iFirst article:1–16, 2010.
Westerhof, N., F. Bosman, C. J. DeVries, and A. Noordergraaf. Analog studies of the human systemic arterial tree. J. Biomech. 2:121–143, 1969.
Whitaker, S. Introduction to Fluid Mechanics. Malabar, FL: Krieger Publishing Company, 1992.
Womersley, J. R. Mathematical theory of oscillating flow in an elastic tube. J. Physiol. 127:37–38, 1955.
Zamir, M. The Physics of Pulsatile Flow. New York: Springer, p. 220, 2000.
Zhang, H., and K. J. Bathe. Direct and iterative computing of fluid flows fully coupled with structures. In: Computational Fluid and Solid Mechanics, edited by K. J. Bathe. New York: Elsevier Science, 2001.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Peter E. McHugh oversaw the review of this article.
Rights and permissions
About this article
Cite this article
Pahlevan, N.M., Amlani, F., Hossein Gorji, M. et al. A Physiologically Relevant, Simple Outflow Boundary Model for Truncated Vasculature. Ann Biomed Eng 39, 1470–1481 (2011). https://doi.org/10.1007/s10439-011-0246-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-011-0246-0