Skip to main content
Log in

A Physiologically Relevant, Simple Outflow Boundary Model for Truncated Vasculature

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A realistic outflow boundary condition model for pulsatile flow in a compliant vessel is studied by taking into account physiological effects: compliance, resistance, and wave reflection of the downstream vasculature. The new model extends the computational domain with an elastic tube terminated in a rigid contraction. The contraction ratio, the length, and elasticity of the terminal tube can be adjusted to represent effects of the truncated vasculature. Using the wave intensity analysis method, we apply the model to the test cases of a straight vessel and the aorta and find good agreement with the physiological characteristics of blood flow and pressure. The model is suitable for cardiac transient (non-periodic) events and easily employed using so-called black box software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. ADINA R&D, Inc. Theory and Modeling Guide, Volume I: ADINA Solids & Structures, 2009.

  2. ADINA R&D, Inc. Theory and Modeling Guide, Volume III: ADINA CFD & FSI, 2009.

  3. Anliker, M., R. L. Rockwell, and E. Ogden. Nonlinear analysis of flow pulses and shock waves in arteries. Z. Angew. Math. Phys. 22:217–246, 1971.

    Article  Google Scholar 

  4. Avolio, A. Aging and wave reflection. J. Hypertens. 10:S83–S86, 1992.

    Article  CAS  Google Scholar 

  5. Bathe, K. J. Finite Element Procedures. Englewood Cliffs, NJ: Prentice-Hall, 2006.

    Google Scholar 

  6. Bathe, M., and R. D. Kamm. A fluid–structure interaction finite element analysis of pulsatile blood flowthrough a compliant stenotic artery. J. Biomech. Eng. Trans. ASME 121:361–369, 1999.

    Article  CAS  Google Scholar 

  7. Bathe, K.-J., and H. Zhang. Finite element developments for general fluid flows with structural interactions. Int. J. Numer. Methods Eng. 60(1):213–232, 2004.

    Article  Google Scholar 

  8. Bathe, K. J., H. Zhang, and M. H. Wang. Finite element analysis of incompressible and compressible fluid flows with free surfaces and structural interactions. Comput. Struct. 56:193–213, 1995.

    Article  Google Scholar 

  9. Bathe, K. J., H. Zhang, and X. Zhang. Some advances in the analysis of fluid flows. Comput. Struct. 64:909–930, 1997.

    Article  Google Scholar 

  10. Bathe, K. J., H. Zhang, and S. Ji. Finite element analysis of fluid flows fully coupled with structural interactions. Comput. Struct. 72:1–16, 1999.

    Article  Google Scholar 

  11. Caro, C. G., T. J. Pedley, R. C. Schroter, and W. A. Seed. The Mechanics of the Circulation. Oxford, UK: Oxford University Press, 1978.

    Google Scholar 

  12. De Pater, L., and J. W. van den Berg. An electrical analog of the human circulatory system. Acta Physiol. Pharma. Neerl. 11:511–512, 1962.

    Google Scholar 

  13. Franklin, S. S., and M. A. Weber. Measuring hypertensive cardiovascular risk: the vascular overload concept. Am. Heart J. 128:793–803, 1994.

    Article  PubMed  CAS  Google Scholar 

  14. Fung, Y. C. Biomechanics Circulation (2nd ed.). New York: Springer, 1997.

    Google Scholar 

  15. Grinberg, L., and G. E. Karniadakis. Outflow boundary conditions for arterial networks with multiple outlets. Ann. Biomed. Eng. 36:1496–1514, 2008.

    Article  PubMed  Google Scholar 

  16. Khir, A. W., A. B. O’Brien, J. S. R. Gibbs, and K. H. Parker. Determination of wave speed and wave separation in the arteries. J. Biomech. 34:1145–1155, 2001.

    Article  PubMed  CAS  Google Scholar 

  17. Koh, T. W., J. R. Pepper, A. C. DeSouza, and K. H. Parker. Analysis of wave reflections in the arterial system using wave intensity: a novel method for predicting the timing and amplitude of reflected waves. Heart Vessels 13:103–113, 1998.

    Article  PubMed  CAS  Google Scholar 

  18. Laskey, W. K., and W. G. Kussmaul. Arterial wave reflection in heart failure. Circulation 75:711–722, 1987.

    PubMed  CAS  Google Scholar 

  19. Laurent, S., P. Boutouyrie, R. Asmar, I. Gautier, B. Laloux, L. Guize, P. Ducimetiere, and A. Benetos. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 37:1236–1241, 2001.

    PubMed  CAS  Google Scholar 

  20. London, G., J. Blacher, B. Pannier, A. P. Guerin, S. J. Marchais, and M. E. Safar. Arterial wave reflections and survival in end-stage renal failure. Hypertension 38:434–438, 2001.

    PubMed  CAS  Google Scholar 

  21. Matthys, K. S., J. Alastruey, J. Piero, A. W. Khir, P. Segers, P. R. Verdonck, K. H. Parker, and S. J. Sherwin. Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulation against in vitro measurements. J. Biomech. 40(15):3476–3486, 2007.

    Article  PubMed  Google Scholar 

  22. Milnor, W. R. Haemodynamics. Baltimore, London: William & Wilson, p. 419, 1982.

    Google Scholar 

  23. Mitchell, G. F., J. C. Tardif, J. M. Arnold, G. Marchiori, T. X. O’Brien, M. E. Dunlap, and M. A. Pfeffer. Pulsatile hemodynamics in congestive heart failure. Hypertension 38:1433–1439, 2001.

    Article  PubMed  CAS  Google Scholar 

  24. Nichols, W. W., and M. F. O’Rourke. McDonald’s Blood Flow in Arteries (4th ed.). London: Arnold, The Hodder Headline Group Publication, p. 564, 1998.

    Google Scholar 

  25. Noordergraaf, A., P. D. Verdouw, and H. B. K. Boom. The use of an analog computer in a circulation model. Prog. Cardiovasc. Dis. 5:419–439, 1963.

    Article  PubMed  CAS  Google Scholar 

  26. O’Rourke, M. F., and W. W. Nichols. Aortic diameter, aortic stiffness, and wave reflection increase with age and isolated systolic hypertension. Hypertension 45:652–658, 2005.

    Article  PubMed  Google Scholar 

  27. Olufsen, M. Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. 276:H257–H268, 1999.

    PubMed  CAS  Google Scholar 

  28. Parker, K. H., and C. J. H. Jones. Forward and backward running waves in the arteries: analysis using the method of characteristics. J. Biomech. Eng. 112:322–332, 1990.

    Article  PubMed  CAS  Google Scholar 

  29. Parker, K. H., C. J. H. Jones, J. R. Dawson, and D. G. Gibson. What stops the flow of blood from the heart? Heart Vessels 4:241–245, 1998.

    Article  Google Scholar 

  30. Schaff, B. W., and P. A. Abbrecht. Digital computer simulation of human systemic arterial pulse wave transmission: a nonlinear model. J. Biomech. 5:345–364, 1972.

    Article  Google Scholar 

  31. Self, D. A., D. L. Ewert, R. D. Swope, R. P. Crisman, and R. D. Latham. Beat-to-beat determination of peripheral resistance and arterial compliance during +Gz centrifugation. Aviat. Space Environ. Med. 65(5):396–403, 1994.

    PubMed  CAS  Google Scholar 

  32. Sherwin, S. J., V. Franke, J. Peiro, and K. Parker. One dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 47(3–4):217–250, 2003.

    Article  Google Scholar 

  33. Stergiopulos, N., D. F. Young, and T. R. Rogge. Computer simulation of arterial flow with applications to arterial and aortic stenosis. J. Biomech. 25:1477–1488, 1992.

    Article  PubMed  CAS  Google Scholar 

  34. Stergiopulos, N., J. J. Meister, and N. Westerhof. Simple and accurate estimating total and segmental arterial compliance: the pulse pressure method. Ann. Biomed. Eng. 22:392–397, 1994.

    Article  PubMed  CAS  Google Scholar 

  35. Stergiopulos, N., J. J. Meister, and N. Westerhof. Evaluation of methods for estimation of total arterial compliance. Am. J. Physiol. Heart Circ. Physiol. 268:H1540–H1548, 1995.

    CAS  Google Scholar 

  36. Taylor, C. A., M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang, and C. K. Zarins. Predictive medicine: computational techniques in therapeutic decision making. Comput. Aided Surg. 4:231–247, 1999.

    Article  PubMed  CAS  Google Scholar 

  37. Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary condition for three-dimensional finite element modeling of blood flow and pressure in arteries. Comp. Methods Appl. Mech. Eng. 195:3776–3796, 2006.

    Article  Google Scholar 

  38. Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary condition for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput. Methods Biomech. iFirst article:1–16, 2010.

  39. Westerhof, N., F. Bosman, C. J. DeVries, and A. Noordergraaf. Analog studies of the human systemic arterial tree. J. Biomech. 2:121–143, 1969.

    Article  PubMed  CAS  Google Scholar 

  40. Whitaker, S. Introduction to Fluid Mechanics. Malabar, FL: Krieger Publishing Company, 1992.

    Google Scholar 

  41. Womersley, J. R. Mathematical theory of oscillating flow in an elastic tube. J. Physiol. 127:37–38, 1955.

    PubMed  CAS  Google Scholar 

  42. Zamir, M. The Physics of Pulsatile Flow. New York: Springer, p. 220, 2000.

    Google Scholar 

  43. Zhang, H., and K. J. Bathe. Direct and iterative computing of fluid flows fully coupled with structures. In: Computational Fluid and Solid Mechanics, edited by K. J. Bathe. New York: Elsevier Science, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Gharib.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pahlevan, N.M., Amlani, F., Hossein Gorji, M. et al. A Physiologically Relevant, Simple Outflow Boundary Model for Truncated Vasculature. Ann Biomed Eng 39, 1470–1481 (2011). https://doi.org/10.1007/s10439-011-0246-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0246-0

Keywords

Navigation