Annals of Biomedical Engineering

, Volume 39, Issue 5, pp 1470–1481 | Cite as

A Physiologically Relevant, Simple Outflow Boundary Model for Truncated Vasculature

  • Niema M. Pahlevan
  • Faisal Amlani
  • M. Hossein Gorji
  • Fazle Hussain
  • Morteza GharibEmail author


A realistic outflow boundary condition model for pulsatile flow in a compliant vessel is studied by taking into account physiological effects: compliance, resistance, and wave reflection of the downstream vasculature. The new model extends the computational domain with an elastic tube terminated in a rigid contraction. The contraction ratio, the length, and elasticity of the terminal tube can be adjusted to represent effects of the truncated vasculature. Using the wave intensity analysis method, we apply the model to the test cases of a straight vessel and the aorta and find good agreement with the physiological characteristics of blood flow and pressure. The model is suitable for cardiac transient (non-periodic) events and easily employed using so-called black box software.


Blood flow Fluid–structure interaction Arterial wave reflection Computer modeling 


  1. 1.
    ADINA R&D, Inc. Theory and Modeling Guide, Volume I: ADINA Solids & Structures, 2009.Google Scholar
  2. 2.
    ADINA R&D, Inc. Theory and Modeling Guide, Volume III: ADINA CFD & FSI, 2009.Google Scholar
  3. 3.
    Anliker, M., R. L. Rockwell, and E. Ogden. Nonlinear analysis of flow pulses and shock waves in arteries. Z. Angew. Math. Phys. 22:217–246, 1971.CrossRefGoogle Scholar
  4. 4.
    Avolio, A. Aging and wave reflection. J. Hypertens. 10:S83–S86, 1992.CrossRefGoogle Scholar
  5. 5.
    Bathe, K. J. Finite Element Procedures. Englewood Cliffs, NJ: Prentice-Hall, 2006.Google Scholar
  6. 6.
    Bathe, M., and R. D. Kamm. A fluid–structure interaction finite element analysis of pulsatile blood flowthrough a compliant stenotic artery. J. Biomech. Eng. Trans. ASME 121:361–369, 1999.CrossRefGoogle Scholar
  7. 7.
    Bathe, K.-J., and H. Zhang. Finite element developments for general fluid flows with structural interactions. Int. J. Numer. Methods Eng. 60(1):213–232, 2004.CrossRefGoogle Scholar
  8. 8.
    Bathe, K. J., H. Zhang, and M. H. Wang. Finite element analysis of incompressible and compressible fluid flows with free surfaces and structural interactions. Comput. Struct. 56:193–213, 1995.CrossRefGoogle Scholar
  9. 9.
    Bathe, K. J., H. Zhang, and X. Zhang. Some advances in the analysis of fluid flows. Comput. Struct. 64:909–930, 1997.CrossRefGoogle Scholar
  10. 10.
    Bathe, K. J., H. Zhang, and S. Ji. Finite element analysis of fluid flows fully coupled with structural interactions. Comput. Struct. 72:1–16, 1999.CrossRefGoogle Scholar
  11. 11.
    Caro, C. G., T. J. Pedley, R. C. Schroter, and W. A. Seed. The Mechanics of the Circulation. Oxford, UK: Oxford University Press, 1978.Google Scholar
  12. 12.
    De Pater, L., and J. W. van den Berg. An electrical analog of the human circulatory system. Acta Physiol. Pharma. Neerl. 11:511–512, 1962.Google Scholar
  13. 13.
    Franklin, S. S., and M. A. Weber. Measuring hypertensive cardiovascular risk: the vascular overload concept. Am. Heart J. 128:793–803, 1994.PubMedCrossRefGoogle Scholar
  14. 14.
    Fung, Y. C. Biomechanics Circulation (2nd ed.). New York: Springer, 1997.Google Scholar
  15. 15.
    Grinberg, L., and G. E. Karniadakis. Outflow boundary conditions for arterial networks with multiple outlets. Ann. Biomed. Eng. 36:1496–1514, 2008.PubMedCrossRefGoogle Scholar
  16. 16.
    Khir, A. W., A. B. O’Brien, J. S. R. Gibbs, and K. H. Parker. Determination of wave speed and wave separation in the arteries. J. Biomech. 34:1145–1155, 2001.PubMedCrossRefGoogle Scholar
  17. 17.
    Koh, T. W., J. R. Pepper, A. C. DeSouza, and K. H. Parker. Analysis of wave reflections in the arterial system using wave intensity: a novel method for predicting the timing and amplitude of reflected waves. Heart Vessels 13:103–113, 1998.PubMedCrossRefGoogle Scholar
  18. 18.
    Laskey, W. K., and W. G. Kussmaul. Arterial wave reflection in heart failure. Circulation 75:711–722, 1987.PubMedGoogle Scholar
  19. 19.
    Laurent, S., P. Boutouyrie, R. Asmar, I. Gautier, B. Laloux, L. Guize, P. Ducimetiere, and A. Benetos. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 37:1236–1241, 2001.PubMedGoogle Scholar
  20. 20.
    London, G., J. Blacher, B. Pannier, A. P. Guerin, S. J. Marchais, and M. E. Safar. Arterial wave reflections and survival in end-stage renal failure. Hypertension 38:434–438, 2001.PubMedGoogle Scholar
  21. 21.
    Matthys, K. S., J. Alastruey, J. Piero, A. W. Khir, P. Segers, P. R. Verdonck, K. H. Parker, and S. J. Sherwin. Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulation against in vitro measurements. J. Biomech. 40(15):3476–3486, 2007.PubMedCrossRefGoogle Scholar
  22. 22.
    Milnor, W. R. Haemodynamics. Baltimore, London: William & Wilson, p. 419, 1982.Google Scholar
  23. 23.
    Mitchell, G. F., J. C. Tardif, J. M. Arnold, G. Marchiori, T. X. O’Brien, M. E. Dunlap, and M. A. Pfeffer. Pulsatile hemodynamics in congestive heart failure. Hypertension 38:1433–1439, 2001.PubMedCrossRefGoogle Scholar
  24. 24.
    Nichols, W. W., and M. F. O’Rourke. McDonald’s Blood Flow in Arteries (4th ed.). London: Arnold, The Hodder Headline Group Publication, p. 564, 1998.Google Scholar
  25. 25.
    Noordergraaf, A., P. D. Verdouw, and H. B. K. Boom. The use of an analog computer in a circulation model. Prog. Cardiovasc. Dis. 5:419–439, 1963.PubMedCrossRefGoogle Scholar
  26. 26.
    O’Rourke, M. F., and W. W. Nichols. Aortic diameter, aortic stiffness, and wave reflection increase with age and isolated systolic hypertension. Hypertension 45:652–658, 2005.PubMedCrossRefGoogle Scholar
  27. 27.
    Olufsen, M. Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. 276:H257–H268, 1999.PubMedGoogle Scholar
  28. 28.
    Parker, K. H., and C. J. H. Jones. Forward and backward running waves in the arteries: analysis using the method of characteristics. J. Biomech. Eng. 112:322–332, 1990.PubMedCrossRefGoogle Scholar
  29. 29.
    Parker, K. H., C. J. H. Jones, J. R. Dawson, and D. G. Gibson. What stops the flow of blood from the heart? Heart Vessels 4:241–245, 1998.CrossRefGoogle Scholar
  30. 30.
    Schaff, B. W., and P. A. Abbrecht. Digital computer simulation of human systemic arterial pulse wave transmission: a nonlinear model. J. Biomech. 5:345–364, 1972.CrossRefGoogle Scholar
  31. 31.
    Self, D. A., D. L. Ewert, R. D. Swope, R. P. Crisman, and R. D. Latham. Beat-to-beat determination of peripheral resistance and arterial compliance during +Gz centrifugation. Aviat. Space Environ. Med. 65(5):396–403, 1994.PubMedGoogle Scholar
  32. 32.
    Sherwin, S. J., V. Franke, J. Peiro, and K. Parker. One dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 47(3–4):217–250, 2003.CrossRefGoogle Scholar
  33. 33.
    Stergiopulos, N., D. F. Young, and T. R. Rogge. Computer simulation of arterial flow with applications to arterial and aortic stenosis. J. Biomech. 25:1477–1488, 1992.PubMedCrossRefGoogle Scholar
  34. 34.
    Stergiopulos, N., J. J. Meister, and N. Westerhof. Simple and accurate estimating total and segmental arterial compliance: the pulse pressure method. Ann. Biomed. Eng. 22:392–397, 1994.PubMedCrossRefGoogle Scholar
  35. 35.
    Stergiopulos, N., J. J. Meister, and N. Westerhof. Evaluation of methods for estimation of total arterial compliance. Am. J. Physiol. Heart Circ. Physiol. 268:H1540–H1548, 1995.Google Scholar
  36. 36.
    Taylor, C. A., M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang, and C. K. Zarins. Predictive medicine: computational techniques in therapeutic decision making. Comput. Aided Surg. 4:231–247, 1999.PubMedCrossRefGoogle Scholar
  37. 37.
    Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary condition for three-dimensional finite element modeling of blood flow and pressure in arteries. Comp. Methods Appl. Mech. Eng. 195:3776–3796, 2006.CrossRefGoogle Scholar
  38. 38.
    Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary condition for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput. Methods Biomech. iFirst article:1–16, 2010.Google Scholar
  39. 39.
    Westerhof, N., F. Bosman, C. J. DeVries, and A. Noordergraaf. Analog studies of the human systemic arterial tree. J. Biomech. 2:121–143, 1969.PubMedCrossRefGoogle Scholar
  40. 40.
    Whitaker, S. Introduction to Fluid Mechanics. Malabar, FL: Krieger Publishing Company, 1992.Google Scholar
  41. 41.
    Womersley, J. R. Mathematical theory of oscillating flow in an elastic tube. J. Physiol. 127:37–38, 1955.PubMedGoogle Scholar
  42. 42.
    Zamir, M. The Physics of Pulsatile Flow. New York: Springer, p. 220, 2000.Google Scholar
  43. 43.
    Zhang, H., and K. J. Bathe. Direct and iterative computing of fluid flows fully coupled with structures. In: Computational Fluid and Solid Mechanics, edited by K. J. Bathe. New York: Elsevier Science, 2001.Google Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Niema M. Pahlevan
    • 1
  • Faisal Amlani
    • 1
  • M. Hossein Gorji
    • 2
  • Fazle Hussain
    • 3
  • Morteza Gharib
    • 1
    Email author
  1. 1.Division of Engineering and Applied SciencesCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Institute of Fluid DynamicsZurichSwitzerland
  3. 3.Department of Mechanical EngineeringUniversity of HoustonHoustonUSA

Personalised recommendations