Annals of Biomedical Engineering

, Volume 38, Issue 7, pp 2331–2345 | Cite as

Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology

  • Elvio A. HeidenreichEmail author
  • José M. Ferrero
  • Manuel Doblaré
  • José F. Rodríguez


Many problems in Biology and Engineering are governed by anisotropic reaction–diffusion equations with a very rapidly varying reaction term. This usually implies the use of very fine meshes and small time steps in order to accurately capture the propagating wave while avoiding the appearance of spurious oscillations in the wave front. This work develops a family of macro finite elements amenable for solving anisotropic reaction–diffusion equations with stiff reactive terms. The developed elements are incorporated on a semi-implicit algorithm based on operator splitting that includes adaptive time stepping for handling the stiff reactive term. A linear system is solved on each time step to update the transmembrane potential, whereas the remaining ordinary differential equations are solved uncoupled. The method allows solving the linear system on a coarser mesh thanks to the static condensation of the internal degrees of freedom (DOF) of the macroelements while maintaining the accuracy of the finer mesh. The method and algorithm have been implemented in parallel. The accuracy of the method has been tested on two- and three-dimensional examples demonstrating excellent behavior when compared to standard linear elements. The better performance and scalability of different macro finite elements against standard finite elements have been demonstrated in the simulation of a human heart and a heterogeneous two-dimensional problem with reentrant activity. Results have shown a reduction of up to four times in computational cost for the macro finite elements with respect to equivalent (same number of DOF) standard linear finite elements as well as good scalability properties.


Cardiac modeling Efficient numerical schemes Pseudo-adaptive meshes Macro finite elements Monodomain equation Reaction diffusion equations 


  1. 1.
    Aliev, R., and A. Panfilov. A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7:293–301, 1996.CrossRefGoogle Scholar
  2. 2.
    Barad, M., and P. Colella. A fourth-order accurate local refinement method for Poisson’s equation. J. Comput. Phys. 209:1–18, 2005.CrossRefGoogle Scholar
  3. 3.
    Bendahmane, M., R. Bürguer, and R. Ruiz-Baier. A multiresolution space-time adaptive scheme for the bidomain model in electrocardiology. Numer. Methods Partial Differ. Equ. 2010. doi: 10.1002/num.20495
  4. 4.
    Bernabeu, M. O., R. Bordas, P. Pathmanathan, J. Pitt-Francis, J. Cooper, A. Garny, D. J. Gavaghan, B. Rodriguez, J. A. Southern, and J. P. Whiteley. Chaste: incorporating a novel multi-scale spatial and temporal algorithm into a large-scale open source library. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1895):1907–1930, 2009.CrossRefGoogle Scholar
  5. 5.
    Buttari, A., and S. Filippone. PSBLAS 2.3 User’s Guide. University of Rome and Tor Vergata, 2008.
  6. 6.
    Cherry, E. M., H. S. Greenside, and C. S. Henriquez. A space-time adaptive method for simulating complex cardiac dynamics. Phys. Rev. Lett. 84:1343–1346, 2000.CrossRefPubMedGoogle Scholar
  7. 7.
    Cherry, E. M., H. S. Greenside, and C. S. Henriquez. Efficient simulation of three-dimensional anisotropic cardiac tissue using an adaptive mesh refinement method. Chaos. 13(3):853–865, 2003.CrossRefPubMedGoogle Scholar
  8. 8.
    Colli-Franzone, P., P. Deuflhard, B. Erdmann, J. Lang, and L. F. Pavarino. Adaptivity in space and time for reaction–diffusion systems in electrocardiology. SIAM J. Sci. Comput. 28(3):942–962, 2006.CrossRefGoogle Scholar
  9. 9.
    Colli-Franzone, P., and L. Pavarino. A parallel solver for reaction–diffusion systems in computational electrocardiology. Math. Models Methods Appl. Sci. 14(6):883–911, 2004.CrossRefGoogle Scholar
  10. 10.
    Faber, G. M., and Y. Rudy. Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. Biophys. J. 78(5):2392–2404, 2000.CrossRefPubMedGoogle Scholar
  11. 11.
    Felippa, C. Introduction to Finite Element Methods. Boulder: Department of Aerospace Engineering Sciences, University of Colorado at Boulder, 2007.Google Scholar
  12. 12.
    Fenton, F., E. Cherry, A. Karma, and W. Rappel. Modelling wave propagation in realistic heart geometries using the phase-field method. Chaos 15:1–11, 2005.CrossRefGoogle Scholar
  13. 13.
    Ferrero, J. M., B. Trenor, B. Rodriguez, and J. Saiz. Electrical activity and reentry during acute regional myocardial ischemia: insights from simulations. Int. J. Bifurcat. Chaos. 13:3703–3715, 2003.CrossRefGoogle Scholar
  14. 14.
    Garfinkel, A., Y. H. Kim, O. Voroshilovsky, Z. Qu, J. R. Kil, M. H. Lee, H. S. Karagueuzian, J. N. Weiss, and P. S. Chen. Preventing ventricular fibrillation by flattering cardiac restitution. Proc. Natl Acad. Sci. 97:6061–6066, 2000.CrossRefPubMedGoogle Scholar
  15. 15.
    Geselowitz, D. B., and W. T. Miller III. A bidomain model for anisotropic cardiac muscle. Ann. Biomed. Eng. 11:315–334, 1983.CrossRefGoogle Scholar
  16. 16.
    Heidenreich, E. A., J. F. Rodriguez, F. J. Gaspar, and M. Doblare. Fourth order compact schemes with adaptive time step for monodomain reaction difusion equations. J. Comput. Appl. Math. 216:39–55, 2008.CrossRefGoogle Scholar
  17. 17.
    Helm, P. A. A novel technique for quantifying variability of cardiac anatomy application to the dyssynchronous failing heart. PhD thesis, Johns Hopkins University, 2005.Google Scholar
  18. 18.
    Henriquez, C. S. Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit. Rev. Bioeng. 21:1–77, 1993.Google Scholar
  19. 19.
    Ho, S. P., and Y. L. Yeh. The use of 2d enriched elements with bubble functions for finite element analysis. Comput. Struct. 84(29–30):2081–2091, 2006.CrossRefGoogle Scholar
  20. 20.
    Hughes, T. J. R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Englewwog Cliffs, NJ: Prentice Hall Inc., 672 pp., 1987.Google Scholar
  21. 21.
    Hunter, P., A. Pullan, and B. Smaill. Modeling total heart function. Annu. Rev. Biomed. Eng. 5:147–177, 2003.CrossRefPubMedGoogle Scholar
  22. 22.
    Katz, A. Physiology of the Heart. Philadelphia, USA: Lippincott Williams and Wilkins, 718 pp., 2001.Google Scholar
  23. 23.
    Karypis, G., and V. Kumar. METIS. A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices. University of Minnesota, Department of Computer Science/Army HPC Research Center, Minneapolis, MN, version 4.0, 1998.
  24. 24.
    Keener, J., and J. Sneyd. Mathematical Physiology. New York: Springer-Verlag, 1148 pp., 2008.Google Scholar
  25. 25.
    Penland, R. C., D. M. Harrild, and C. S. Heniquez. Modeling impulse propagation and extracellular potential distributions in anisotropic cardiac tissue using a finite volume discretization. Comput. Visualizat. Sci. 4:215–226, 2000.CrossRefGoogle Scholar
  26. 26.
    Qu, Z., and A. Garfinkel. An advanced algorithm for solving partial differential equations in cardiac conduction. IEEE Trans. Biomed. Eng. 46: 1166–1168, 1999.CrossRefPubMedGoogle Scholar
  27. 27.
    Rodriguez, B., N. Trayanova, and D. Noble. Modeling cardiac ischemia. Ann. N Y Acad. Sci. 1080:395–414, 2006.CrossRefPubMedGoogle Scholar
  28. 28.
    Rogers, J. M., and A. D. McCulloch. A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41:743–757, 1994.CrossRefPubMedGoogle Scholar
  29. 29.
    Rosamond, W., et al. Heart disease and stroke statistics—2008. Circulation 117:e25–e146, 2008.CrossRefPubMedGoogle Scholar
  30. 30.
    Skouibine, K., N. Trayanova, and P. Moore. A numerical efficient method for simulation of defibrillation in an active bidomain sheet of myocardium. Math. Biosci. 116:85–100, 2000.CrossRefGoogle Scholar
  31. 31.
    Spotz, W. F., and G. F. Carey. Extension of high-order compact schemes to time-dependent problems. Numer. Methods Partial. Differ. Eq. 17:657–672, 2001.CrossRefGoogle Scholar
  32. 32.
    Strang G. On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3):506–517, 1968.CrossRefGoogle Scholar
  33. 33.
    Sundnes, J., B. F. Nielsen, K. A. Mardal, X. Cai, G. T. Lines, and A. Tveito. On the computational complexity of the bidomain and the monodomain models of electrophysiology. Ann. Biomed. Eng. 34:1088–1097, 2006.CrossRefPubMedGoogle Scholar
  34. 34.
    Taggart, P., P. M. Sutton, T. Opthof, R. Coronel, T. Richard, W. Pugsley, and P. Kallis. Inhomogeneous transmural conduction during early ischaemia in patients with coronary artery disease. J. Mol. Cell Cardiol. 32(4):621–630, 2000.CrossRefPubMedGoogle Scholar
  35. 35.
    ten Tusscher, K. H.W. J., D. Noble, P. J. Noble, and A.V. Panfilov. A model of human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286:H1573–H1589, 2004.CrossRefPubMedGoogle Scholar
  36. 36.
    ten Tusscher, K. H. W. J., and A. V. Panfilov. Alternants and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291:H1088–H1100, 2006.CrossRefPubMedGoogle Scholar
  37. 37.
    Trangenstein, J. A., and C. H. Kim. Operator splitting and adaptive mesh refinement for the Luo–Rudy I model. J. Comput. Phys. 196:645–679, 2004.CrossRefGoogle Scholar
  38. 38.
    Trayanova, N., J. Eason, and F. Aguel. Computer simulations of cardiac defibrillation: a look inside the heart. Comput. Vis. Sci. 4:259–270, 2002.CrossRefGoogle Scholar
  39. 39.
    Whiteley, J. P. Physiology driven adaptivity for the numerical solution of the bidomain equations. Ann. Biomed. Eng. 35(9):1510–1520, 2007.CrossRefPubMedGoogle Scholar
  40. 40.
    Whiteley, J. An efficient technique for the numerical solution of the bidomain equations. Ann. Biomed. Eng. 36(8):1398–1408, 2008.CrossRefPubMedGoogle Scholar
  41. 41.
    Wilson, E. L. The static condensation algorithm. Int. J. Numer. Methods Eng. 8(1):198–203, 1974.CrossRefGoogle Scholar
  42. 42.
    Zienkiewicz, O. C., and R. L. Taylor. Finite Element Method, Vol. 1. Butterworth-Heinemann, Burlington, MA: Elsevier, 752 pp., 2005.Google Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Elvio A. Heidenreich
    • 1
    • 2
    Email author
  • José M. Ferrero
    • 3
  • Manuel Doblaré
    • 1
    • 2
  • José F. Rodríguez
    • 1
    • 2
  1. 1.Group of Structural Mechanics and Materials Modeling, Aragón Institute of Engineering Research (I3A)Universidad de ZaragozaZaragozaSpain
  2. 2.Centro de Investigación Biomédica en Red en BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)ZaragozaSpain
  3. 3.Research and Innovation Center on Bioengineering, Department of Electronic EngineeringPolytechnic University of ValenciaValenciaSpain

Personalised recommendations