Skip to main content
Log in

The Effect of Stent Porosity and Strut Shape on Saccular Aneurysm and its Numerical Analysis with Lattice Boltzmann Method

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The analysis of a flow pattern in cerebral aneurysms and the effect of stent strut shapes are presented in this article. The treatment of cerebral aneurisms with a porous stent has recently been proposed as a minimally invasive way to prevent rupture and favor coagulation mechanism inside the aneurism. The efficiency of stent is related to several parameters, including porosity and stent strut shapes. The goal of this article is to study the effect of the stent strut shape and porosity on the hemodynamic properties of the flow inside an aneurysm using a numerical analysis. In this study, we use the concept of flow reduction to characterize the stent efficiency. Also, we use the lattice Boltzmann method (LBM) of a non-Newtonian blood flow. To resolve the characteristics of a highly complex flow, we use an extrapolation method for the wall and stent boundary. To ease the code development and facilitate the incorporation of new physics, a scientific programming strategy based on object-oriented concepts is developed. Reduced velocity, smaller average vorticity magnitude, smaller average shear rate, and increased viscosity are observed when the proposed stent shapes and porosities are used. The rectangular stent is observed to be optimal and to decrease the magnitude of the velocity by 89.25% in the 2D model and 53.92% in the 3D model in the aneurysm sac. Our results show the role of the porosity and stent strut shape and help us to understand the characteristics of stent strut design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Aenis, M., A. P. Stancampiano, A. K. Wakhloo, and B. B. Lieber. Modeling of flow in a straight stented and nonstented side wall aneurysm model. J. Biomech. Eng. 119:206–212, 1997.

    Article  CAS  PubMed  Google Scholar 

  2. Ahn, S. W. The effect of roughness types on friction factors and heat transfer in roughness rectangular duct. Int. Commun. Heat Mass Transfer 28:933–942, 2001.

    Article  Google Scholar 

  3. Bando, K., and S. A. Berger. Research on fluid-dynamic design criterion of stent used for treatment of aneurysms by means of computational simulation. Comp. Fluid Dynam. J. 11(4):527–531, 2003.

    Google Scholar 

  4. Barath, K., F. Cassot, M. Ohta, J. H. D. Fasel, and D. A. Rufenacht. Influence of stent properties on the alteration of cerebral intra-aneurysmal haemodynamics: flow quantification in elastic sidewall aneurysm models. Neurol. Res. 27:S120–S128, 2005.

    Article  PubMed  Google Scholar 

  5. Burleson, C., C. M. Strother, and V. T. Turritto. Computer modeling of intracranical saccular and lateral anerusysm for the study of their hemodynamics. Neurosurgery 37:325–332, 1995.

    Google Scholar 

  6. Cebral, J. R., and R. Lohner. Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique. IEEE Trans. Med. Imaging 24:468–476, 2005.

    Article  PubMed  Google Scholar 

  7. Chen, S., D. Martinez, and R. Mei. On boundary conditions in lattice Boltzmann methods. Phys. Fluids 8:2527–2536, 1996.

    Article  CAS  Google Scholar 

  8. Cho, Y. I., and K. R. Kensey. Effect of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part I: steady flows. Biorheology 28:241–262, 1991.

    CAS  PubMed  Google Scholar 

  9. Cornubert, R., D. d’Humeie′res, and D. Levermore. A Knudsen layer theory for lattice gases. Physica D 47:241–259, 1991.

    Article  Google Scholar 

  10. Finol, E. A., and C. H. Amon. Flow-induced wall shear stress in abdominal aortic aneurysms: Part II–pulsatile flow hemodynamics. Comp. Methods Biomech. Biomed. Eng. 5:319–328, 2002.

    Article  Google Scholar 

  11. Fourtrakis, C. F., H. Yonas, and R. J. Sclabassi. Saccular aneurysm formation in curved and bifurcation arteries. AJNR 20:1309–1317, 1999.

    Google Scholar 

  12. Geremia, G., M. Haklic, and L. Brennecke. Embolization of experimentally created aneurysms with intravascular stent devices. AJNR 15:1223–1231, 1994.

    CAS  PubMed  Google Scholar 

  13. Ginzbourg, I., and P. M. Adler. Boundary flow condition analysis for the 3D lattice Boltzmann model. J. Phys. II France. 4:191–214, 1994.

    Article  Google Scholar 

  14. Gonzalez, C., Y. I. Cho, H. V. Ortega, and J. Moret. Intracranial aneurysm: flow analysis of their origin and progression. AJNR 13:181–188, 1992.

    CAS  PubMed  Google Scholar 

  15. Gordon, P. C., S. P. Friebach, and R. N. Piana. Is 40% to 70% diameter narrowing at the site of previous stenting or directional coronary atherectomy clinically significant? Am. J. Cardiol. 76:26–32, 1996.

    Google Scholar 

  16. Guo, Z., and C. Zheng. An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. Fluids 14:2007–2010, 2002.

    Article  CAS  Google Scholar 

  17. Han, J. C., L. R. Glicksman, and W. M. Rohsenow. An investigation of heat transfer and friction for rib-roughened surfaces. Int. J. Heat Mass Trans. 21:1143–1155, 1978.

    Article  CAS  Google Scholar 

  18. He, X., Q. Zou, L. S. Luo, and M. Dembo. Analytic solutions of simple flows and non-slip boundary condition for the lattice Boltzmann BGK model. J. Stat. Phys. 87:115–136, 1997.

    Article  Google Scholar 

  19. Hirabayashi, M., M. Ohta, K. Barath, D. A. Rufenacht, and B. Chopard. Numerical analysis of the flow pattern in stented aneurysms and its relation to velocity reduction and stent efficiency. Math. Comp. Simulation 72:128–133, 2006.

    Article  Google Scholar 

  20. Hirabayashi, M., M. Ohta, D. A. Rufunacht, and B. Chopard. A lattice Boltzmann study of blood flow in stented aneurism. Future Gen. Comput. Syst. 20:925–934, 2004.

    Article  Google Scholar 

  21. Kim, C. H., H. Kikuchi, U. Hashimoto, M. Kojima, Y. Kang, and F. Hazama. Involvement of internal elastic lamina in development of induced cerebral aneurysms in rats. Stroke 19:507–511, 1988.

    CAS  PubMed  Google Scholar 

  22. Kim, Y. H., P. J. VandeVord, and J. S. Lee. Multiphase non-Newtonian effects on pulsatile hemodynamics in a coronary artery. Int. J. Num. Meth. Fluid 58:803–825, 2008.

    Article  CAS  Google Scholar 

  23. Kuntz, R. E., and D. S. Baim. Defining coronary restenosis: newer clinical and angiographic paradigms. Circulation 88:1310–1323, 1993.

    CAS  PubMed  Google Scholar 

  24. Lieber, B. B., V. Livescu, L. N. Hopkins, and A. K. Wakhloo. Particle image velocimetry assessment of stent design influence on intra-aneurysmal flow. Ann. Biomed. Eng. 30:768–777, 2002.

    Article  PubMed  Google Scholar 

  25. Lieber, B. B., A. P. Stancampiano, and A. K. Wakhloo. Alteration models by stenting: influence of stent porosity. Ann. Biomed. Eng. 25:460–469, 1997.

    Article  CAS  PubMed  Google Scholar 

  26. Lieber, B. B., A. P. Stancampiano, and A. K. Wakhloo. Alteration of hemodynamics in aneurism models by stenting: influence on stent porosity. Ann. Biomed. Eng. 25(3):460–469, 1997.

    Article  CAS  PubMed  Google Scholar 

  27. Liepsch, D. W., H. J. Steiger, A. Poll, and H. J. Reulen. Hemodynamic stress in lateral saccular aneurysms. Biorheology 24:689–710, 1987.

    CAS  PubMed  Google Scholar 

  28. Liou, T. M., W. C. Chang, and C. C. Liao. Experimental study of steady and pulsatile flows in cerebral aneurysm models of various sizes at branching site. J. Biomech. Eng. 119:325–332, 1997.

    Article  CAS  PubMed  Google Scholar 

  29. Liou, T. M., and S. N. Liou. Pulsatile flows in a lateral aneurysm anchored on stented and curved parent vessel. Exp. Mech. 44(3):253–260, 2004.

    Article  Google Scholar 

  30. Liou, T. M., S. N. Liou, and K. L. Chu. Intra-aneurysmal flow with helix and mesh stent placement across side-wall aneurysm pore of a straight parent vessel. J. Biomech. Eng. 126:36–43, 2004.

    Article  PubMed  Google Scholar 

  31. Mark, M. P., M. D. Dake, G. K. Steinberg, A. M. Norbash, and B. Lane. Stent placement for arterial and venous cerebrovascular disease: preliminary clinical experience. Radiology 191:441–446, 1994.

    Google Scholar 

  32. Mayberg, M. R., H. H. Batjer, and R. Darcey. Guidelines for management of aneurismal subarachnoid hemorrhage. Circulation 90:2592–2605, 1994.

    CAS  PubMed  Google Scholar 

  33. Mills, C., I. Gabe, J. Gault, D. Mason, J. Ross, Jr., E. Braunwald, and J. Shillingford. Pressure-flow relationships and vascular impedance in man. Cardiovasc. Res. 4:405–417, 1970.

    Article  CAS  PubMed  Google Scholar 

  34. Milnor, W. Hemodynamics (2nd ed.). Baltimore: Williams and Wilkins, 1989.

    Google Scholar 

  35. Moore, Jr., J. E., and J. L. Berry. Fluid and solid mechanical implications of vascular stenting. Ann. Biomech. Eng. 30:498–508, 2001.

    Article  Google Scholar 

  36. Moore, Jr., J. E., and D. N. Ku. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions. ASME J. Biomech. Eng. 116:337–346, 1994.

    Article  Google Scholar 

  37. Moore, Jr., J. E., D. N. Ku, C. K. Zarins, and S. Glagov. Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: implications for increased susceptibility to atherosclerosis. ASME J. Biomech. Eng. 114:391–397, 1992.

    Article  Google Scholar 

  38. Munson, B. R., D. F. Young, and T. H. Okiishi. Fundamentals of Fluid Mechanics (5th ed.). John Wiley & Sons, Inc., 2006.

  39. Ouared, R., and B. Chopard. Lattice Boltzmann simulations of blood flow: non-Newtonian rheology and clotting processes. J. Stat. Phys. 121:209–221, 2005.

    Article  Google Scholar 

  40. Raabe, D. Overview of the lattice-Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering. Model. Simulation Mater. Sci. 12:R13–R46, 2004.

    Article  Google Scholar 

  41. Rouson, D., K. Morris, and X. Xu. Dynamic memory de-allocation in Fortran 95/2003 derived type calculus. Sci. Program. 13:189–203, 2005.

    Google Scholar 

  42. Rouson, D., X. Xu, and K. Morris. Formal constraints on memory management for composite overloaded operations. Sci. Program. 14:27–40, 2006.

    Google Scholar 

  43. Steiger, H. J. Pathophysiology of development and rupture of cerebral aneurysm. Acta Neurochirurgia Supp. 48:24–28, 1990.

    Google Scholar 

  44. Strother, C. M., V. B. Graves, and A. Rappe. Aneurysm hemodynamics: an experimental study. AJNR 3:1089–1095, 1992.

    Google Scholar 

  45. Stuhne, G. R., and D. A. Steinman. Finite-element modeling of the hemodynamics of stented aneurysms. J. Biomech. Eng. 126:382–387, 2004.

    Article  PubMed  Google Scholar 

  46. Turjman, F., T. F. Massoud, C. Ji, G. Guglielmi, F. Vinuela, and J. Robert. Combined stent implantation and endosaccular coil placement for treatment of experimental wide-necked aneurysms: a feasibility study in swine. AJNR 15:1087–1090, 1994.

    CAS  PubMed  Google Scholar 

  47. Ujiie, H. D., W. Liepsch, M. Goetz, R. Yamaguchi, H. Yonetani, and K. Takakura. Hemodynamic study of the anterior communicating artery. Stroke 27:2086–2093, 1996.

    CAS  PubMed  Google Scholar 

  48. Wakhloo, A. K., F. Scellhammer, J. de Vries, J. Haberstroh, and M. Schumacher. Self-expanding and balloon-expandable stents: an experimental study in a canine model. AJNR 15:493–502, 1994.

    CAS  PubMed  Google Scholar 

  49. Wakhloo, A. K., F. Schellhammer, J. de Vries, J. Haverstroh, and M. Schumacher. Self-expanding and balloon-expandable stents in the treatment of carotid aneurisms: an experimental study in a canie model. AJNR Am. J. Neuroradiol. 15:493–502, 1994.

    CAS  PubMed  Google Scholar 

  50. Wakhloo, A. K., F. O. Trio, F. Scellhammer, M. Graf, and L. N. Hopkins. Self-expanding nitinol stents in canine vertebral arteries. AJNR 16:1043–1051, 1995.

    CAS  PubMed  Google Scholar 

  51. Xu, X., and J. S. Lee. Application of the Lattice Boltzmann method to flow in aneurysm with ring-shaped stent obstacles. Int. J. Num. Meth. Fluids 59(6):691–710, 2008.

    Article  Google Scholar 

  52. Xu, X., Y. H. Kim, and J. S. Lee. Lattice Boltzmann method of blood flow in anastomosis models with non-newtonian effect. In: Proceedings of the UKC 2007 Conference, VA, 2007.

  53. Yakhot, A., L. Grinberg, and N. Nikitin. Modeling rough stenoses by an immersed-boundary method. J. Biomech. 38:1115–1127, 2005.

    Article  PubMed  Google Scholar 

  54. Yoshino, M., Y. Hotta, T. Hirozane, and E. Endo. A numerical method for incompressible non-Newtonian fluid flows base on the lattice Boltzmann method. J. Non-Newtonian Fluids Mech. 147:69–78, 2007.

    Article  CAS  Google Scholar 

  55. Yu, S. C. M., and J. B. Zhao. A steady flow analysis on the stented and non-stented sidewall aneurism models. Med. Eng. Phys. 21:133–141, 1999.

    Article  CAS  PubMed  Google Scholar 

  56. Zou, Q., S. Hou, and G. D. Doolen. Analytical solutions of the lattice Boltzmann BGK model. J. Stat. Phys. 81:319–334, 1995.

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant of the Korea Healthcare technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (Grant number: A085136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Sang Lee.

Additional information

Associate Editor Kerry Hourigan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.H., Xu, X. & Lee, J.S. The Effect of Stent Porosity and Strut Shape on Saccular Aneurysm and its Numerical Analysis with Lattice Boltzmann Method. Ann Biomed Eng 38, 2274–2292 (2010). https://doi.org/10.1007/s10439-010-9994-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9994-5

Keywords

Navigation