Skip to main content
Log in

A Clinically Applicable Model to Estimate the Opposing Muscle Groups Contributions to Isometric and Dynamic Tasks

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This article presents an EMG-to-moment optimization model suitable for clinical studies to estimate the contribution of agonist and antagonist muscle groups to the net ankle joint moment during dynamic and isometric tasks. The proposed EMG-to-moment model took into account realistic muscle properties such as the electromechanical delay, and a force–length–velocity relationship with subject-specific muscle anthropometric data. Subjects performed isometric ankle plantar-flexion (fixed-end contraction) and dynamic tasks (heel-raise) in two positions, seated and upright. Two models were compared: the proposed EMG-to-moment model calibrated on eight dynamic and isometric tasks (Model 8-tasks) and on two dynamic tasks (Model 2-tasks), and a published reference model. First, each model was calibrated at the ankle joint on 10 subjects by adjusting individual set of parameters to estimate the muscle groups contributions. Then, the model was used to predict the ankle net joint moment. The model developed in this study showed good prediction. The Model 8-tasks predicted net joint moment with an average RMS error of 6.11 ± 4.41 N m and a mean R 2 of 0.67 ± 0.26 across dynamic and isometric tasks. The proposed EMG-to-moment model was simple and required few calibration tasks without oversimplifying muscle properties, satisfying requirements for clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Allinger, T. L., and J. R. Engsberg. A method to determine the range of motion of the ankle joint complex, in vivo. J. Biomech. 26:69–76, 1993.

    Article  CAS  PubMed  Google Scholar 

  2. Amarantini, D., and L. Martin. A method to combine numerical optimization and EMG data for the estimation of joint moments under dynamic conditions. J. Biomech. 37:1393–1404, 2004.

    Article  PubMed  Google Scholar 

  3. Buchanan, T. S. Evidence that maximum muscle stress is not a constant: differences in specific tension in elbow flexors and extensors. Med. Eng. Phys. 17:529–536, 1995.

    Article  CAS  PubMed  Google Scholar 

  4. Buchanan, T. S., D. G. Lloyd, K. Manal, and T. F. Besier. Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J. Appl. Biomech. 20:367–395, 2004.

    PubMed  Google Scholar 

  5. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. Opensim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.

    Article  PubMed  Google Scholar 

  6. Delp, S. L., J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and J. M. Rosen. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37:757–767, 1990.

    Article  CAS  PubMed  Google Scholar 

  7. Denoth, J., E. Stüssi, G. Csucs, and G. Danuser. Single muscle fiber contraction is dictated by inter-sarcomere dynamics. J. Theor. Biol. 216:101–122, 2002.

    Article  PubMed  Google Scholar 

  8. Don, R., A. Ranavolo, A. Cacchio, M. Serrao, F. Costabile, M. Iachelli, F. Camerota, M. Frascarelli, and V. Santilli. Relationship between recovery of calf-muscle biomechanical properties and gait pattern following surgery for achilles tendon rupture. Clin. Biomech. 22:211–220, 2007.

    Article  Google Scholar 

  9. Doorenbosch, C. A. M., and J. Harlaar. A clinically applicable EMG-force model to quantify active stabilization of the knee after a lesion of the anterior cruciate ligament. Clin. Biomech. 18:142–149, 2003.

    Article  Google Scholar 

  10. Doorenbosch, C. A. M., and J. Harlaar. Accuracy of a praticable EMG to force model for knee muscles. Neurosci. Lett. 368:78–81, 2004.

    Article  CAS  PubMed  Google Scholar 

  11. Finni, T., P. V. Komi, and J. Lukkariniemi. Achilles tendon loading during walking: application of a novel optic fiber technique. Eur. J. Appl. Physiol. Occup. Physiol. 77(3):289–291, 1998.

    Article  CAS  PubMed  Google Scholar 

  12. Fukunaga, T., R. R. Roy, F. G. Shellock, J. A. Hodgson, and V. R. Edgerton. Specific tension of human plantar flexors and dorsiflexors. J. Appl. Physiol. 80:158–165, 1996.

    CAS  PubMed  Google Scholar 

  13. Gordon, A. M., A. F. Huxley, and F. J. Julian. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 184:170–192, 1966.

    CAS  PubMed  Google Scholar 

  14. Granata, K. P., and W. S. Marras. Cost-benefit of muscle cocontraction in protecting against spinal instability. Spine 25:1398–1404, 2000.

    Article  CAS  PubMed  Google Scholar 

  15. Hermens, H. J., B. Freriks, C. Disselhorst-Klug, and G. Rau. Development of recommendations for sEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 10:361–374, 2000.

    Article  CAS  PubMed  Google Scholar 

  16. Hill, A. V. The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc. Lond. Ser. B 136:399, 1938.

    Article  Google Scholar 

  17. Hodges, P. W., and B. H. Bui. A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography. Electroencephalogr. Clin. Neurophysiol. 101:511–519, 1996.

    Article  CAS  PubMed  Google Scholar 

  18. Hof, A. L. In vivo measurement of the series elasticity release curve of human triceps surae muscle. J. Biomech. 31:793–800, 1998.

    Article  CAS  PubMed  Google Scholar 

  19. Hof, A. L., and J. van den Berg. Linearity between the weighted sum of the EMGs of the human triceps surae and the total torque. J. Biomech. 10:529–539, 1977.

    Article  CAS  PubMed  Google Scholar 

  20. Howatson, G., M. Glaister, J. Brouner, and K. A. van Someren. The reliability of electromechanical delay and torque during isometric and concentric isokinetic contractions. J. Electromyogr. Kinesiol. 19:975–979, 2008.

    Article  PubMed  Google Scholar 

  21. Kellis, E., and A. Katis. Hamstring antagonist moment estimation using clinically applicable models: muscle dependency and synergy effects. J. Electromyogr. Kinesiol. 18:144–153, 2008.

    Article  PubMed  Google Scholar 

  22. Krevolin, J. L., M. G. Pandy, and J. C. Pearce. Moment arm of the patellar tendon in the human knee. J. Biomech. 37:785–788, 2004.

    Article  PubMed  Google Scholar 

  23. Langenderfer, J., S. LaScalza, A. Mell, J. E. Carpenter, J. E. Kuhn, and R. E. Hughes. An EMG-driven model of the upper extremity and estimation of long head biceps force. Comput. Biol. Med. 35:25–39, 2005.

    Article  PubMed  Google Scholar 

  24. Laursen, B., B. R. Jensen, G. Németh, and G. Sjøgaard. A model predicting individual shoulder muscle forces based on relationship between electromyographic and 3D external forces in static position. J. Biomech. 31:731–739, 1998.

    Article  CAS  PubMed  Google Scholar 

  25. Linford, C. W., J. T. Hopkins, S. S. Schulthies, B. Freland, D. O. Draper, and I. Hunter. Effects of neuromuscular training on the reaction time and electromechanical delay of the peroneus longus muscle. Arch. Phys. Med. Rehabil. 87:395–401, 2006.

    Article  PubMed  Google Scholar 

  26. Lloyd, D., and T. Besier. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 36:765–776, 2003.

    Article  PubMed  Google Scholar 

  27. Maganaris, C. N. Force-length characteristics of in vivo human skeletal muscle. Acta Physiol. Scand. 172:279–285, 2001.

    Article  CAS  PubMed  Google Scholar 

  28. Manal, K., and T. S. Buchanan. A one-parameter neural activation to muscle activation model: estimating isometric joint moments from electromyograms. J. Biomech. 36:1197–1202, 2003.

    Article  PubMed  Google Scholar 

  29. Manal, K., and W. Rose. A general solution for the time delay introduced by a low-pass butterworth digital filter: an application to musculoskeletal modeling. J. Biomech. 40:678–681, 2007.

    Article  PubMed  Google Scholar 

  30. Muraoka, T., T. Muramatsu, T. Fukunaga, and H. Kanehisa. Influence of tendon slack on electromechanical delay in the human medial gastrocnemius in vivo. J. Appl. Physiol. 96:540–544, 2004.

    Article  PubMed  Google Scholar 

  31. Nussbaumand, M. A., and D. B. Chaffin. Lumbarmuscle force estimation using a subject-invariant 5-parameter EMG-based model. J. Biomech. 31:667–672, 1998.

    Article  Google Scholar 

  32. Rao, G., D. Amarantini, and E. Berton. Influence of additional load on the moments of the agonist and antagonist muscle groups at the knee joint during closed chain exercise. J. Electromyogr. Kinesiol. 19:459–466, 2009.

    Article  PubMed  Google Scholar 

  33. Riener, R., and T. Edrich. Identification of passive elastic joint moments in the lower extremities. J. Biomech. 32:539–544, 1999.

    Article  CAS  PubMed  Google Scholar 

  34. Schutte, L., M. Rodgers, F. Zajac, and R. Glaser. Improving the efficacy of electrical stimulation-induced leg cycle ergometry: an analysis based on a dynamic musculoskeletal model. IEEE Trans. Rehab. Eng. 1:109–125, 1993.

    Article  Google Scholar 

  35. Scott, S. H., and G. E. Loeb. Mechanical properties of aponeurosis and tendon of the cat soleus muscle during whole-muscle isometric contractions. J. Morphol. 224:73–86, 1995.

    Article  CAS  PubMed  Google Scholar 

  36. Seth, A., and M. G. Pandy. A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement. J. Biomech. 40:356–366, 2007.

    Article  PubMed  Google Scholar 

  37. Shiavi, R., C. Frigo, and A. Pedotti. Electromyographic signals during gait: criteria for envelope filtering and number of strides. Med. Biol. Eng. Comput. 36:171–178, 1998.

    Article  CAS  PubMed  Google Scholar 

  38. Solomonow, M., R. Baratta, B. H. Zhou, H. Shoji, W. Bose, C. Beck, and R. D’Ambrosia. The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am. J. Sports Med. 15:207–213, 1987.

    Article  CAS  PubMed  Google Scholar 

  39. Van Dieën, J. H., and B. Visser. Estimating net lumbar sagittal plane moments from EMG data. The validity of calibration procedures. J. Electromyogr. Kinesiol. 9:309–315, 1999.

    Article  PubMed  Google Scholar 

  40. Winter, D. A. Biomechanics and Motor Control of Human Movement, 2nd edn. Wiley, 1990.

  41. Zajac, F. E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17:359–411, 1989.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Laurent Vigouroux (Aix-Marseille University), and Kurt Manal (Department of Mechanical Engineering, University of Delaware, Newark, DE, USA) for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline Gerus.

Additional information

Associate Editor Catherine Disselhorst-Klug oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerus, P., Rao, G., Buchanan, T.S. et al. A Clinically Applicable Model to Estimate the Opposing Muscle Groups Contributions to Isometric and Dynamic Tasks. Ann Biomed Eng 38, 2406–2417 (2010). https://doi.org/10.1007/s10439-010-9987-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9987-4

Keywords

Navigation