Skip to main content
Log in

Computational Hemodynamic Analysis in Congenital Heart Disease: Simulation of the Norwood Procedure

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Hypoplastic left heart syndrome (HLHS) is a congenital heart disease which should be treated at neonate. Even now, its operation is one of the greatest challenges. However, currently there are no quantitative standards to evaluate and predict the outcome of the therapy. In this study, computational fluid dynamics (CFD) was used to estimate the performance of first stage HLHS surgery, the Norwood operation. An image data transfer system was developed to convert clinical images into three-dimensional geometry. To confirm software applicability, a validation process was carried out to eliminate any influence of numerical procedures. The velocities derived from echocardiography measurements were used as boundary conditions, and pressure waves measured by a cardiac catheter simultaneous with an electrocardiogram (ECG) were employed to validate the results of CFD simulation. Calculated results were congruent with the in vivo measurement results. The blood flow circulations were successfully simulated and the distribution of blood flow in each vessel was estimated. Time-varying energy losses (EL), local pressure and wall shear stress (WSS) were analyzed to estimate clinical treatment. The results indicated that pulsatile simulation is essential in quantitative evaluation. Computational hemodynamics may be applied in the surgical optimization for the treatment of HLHS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Bargeron, C. B., O. J. Deters, F. F. Mark, and M. H. Friedman. Effect of flow partition on wall shear in a cast of a human coronary artery. Cardiovasc. Res. 22(5):340–344, 1988.

    Article  CAS  PubMed  Google Scholar 

  2. Bove, E. L., M. R. de Leval, F. Migliavacca, G. Guadagni, and G. Dubini. Computational fluid dynamics in the evaluation of hemodynamics performance of cavopulmonary connections after norwood procedure for hypoplastic left heart syndrome. J. Thorac. Cardiovasc. Surg. 126:1040–1047, 2003.

    Article  PubMed  Google Scholar 

  3. Bove, E. L., and T. R. Lloyd. Staged reconstruction for hypoplastic left heart syndrome: Contemporary results. Ann. Surg. 224(3):387–395, 1996.

    Article  CAS  PubMed  Google Scholar 

  4. de Zelicouet, D. A., K. Pekkan, J. Parks, K. Kanter, M. Fogel, and A. P. Yoganathan. Flow study of an extracardiac connection with persistent left superior vena cava. J. Thorac. Cardiovasc. Surg. 131(4):785–791, 2006.

    Article  Google Scholar 

  5. Fung, Y. C. Biomechanics. Springer-Verlag, 1981.

  6. Fung, Y. C. Biomechnics Circulation, Chap 3, 2nd edn. New York: Springer, 1997.

  7. Gimbrone, M. A., N. Resnick, T. Nagel, et al. Hemodynamics, endothelial gene expression, and atherogenesis. Ann. NY Acad. Sci. 15:1–10, 1997.

    Article  Google Scholar 

  8. Hart, J. D. Nonparametric Smoothing and Lack-of-Fit Tests, 1st edn. New York: Springer-Verlag, 1997.

    Google Scholar 

  9. He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J. Biomech. Eng. 118:74–82, 1996.

    Article  CAS  PubMed  Google Scholar 

  10. Kilner, P. J., G. Z. Yang, R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore. Helical and retrograde secondary flow patterns in the aortic arch studied by three-dimensional magnetic resonance velocity mapping. Circulation 88:2235–2247, 1993.

    CAS  PubMed  Google Scholar 

  11. Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399–434, 1997.

    Article  Google Scholar 

  12. Ku, D. N., and D. P. Giddens. Laser Doppler anemometer measurement of pulsatile flow in a model carotid bifurcation. J. Biomech. 20:407–421, 1987.

    Article  CAS  PubMed  Google Scholar 

  13. Launder, B. E., and B. I. Sharma. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1:131–138, 1974.

    Article  Google Scholar 

  14. Launder, B. E., and D. B. Spalding. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3:269–289, 1974.

    Article  Google Scholar 

  15. Linderkamp, O., P. Y. K. Wu, and H. J. Meiselman. Deformability of density separated red blood cells in normal newborn infants and adults. Pediatr. Res. 16(11):964–968, 1982.

    Article  CAS  PubMed  Google Scholar 

  16. Long, J. A., A. Undar, K. B. Manning, and S. Deutsch. Viscoelasticity of pediatric blood and its implications for the testing of a pulsatile pediatric blood pump. Am. Soc. Artif. Int. Org. 563–566, 2005.

  17. Mackintosh, T. F., and C. H. M. Walker. Blood viscosity in the newborn. Arch. Dis. Child. 48:547–553, 1973.

    Article  CAS  PubMed  Google Scholar 

  18. McDonald, D. A. Blood Flow in Arteries. Edward Arnold Ltd., 1974.

  19. McGuirk, S. P., M. Griselli, O. F. Stumper, E. M. Rumball, P. Miller, R. Dhillon, J. V. Giovanni, J. G. Wright, et al. Staged surgical management of hypoplastic left heart syndrome: a single institution 12-year experience. Heart 92:364–370, 2005.

    Article  PubMed  Google Scholar 

  20. Migliavacca, F., G. Pennati, G. Dubini, R. Fumero, et al. Modeling of the Norwood circulation: effects of shunt size, vascular, resistances and heart rare. Am. J. Physiol. Heart Circ. 280:H2076–H2086, 2001.

    CAS  Google Scholar 

  21. Nerem, R. M., W. A. Seed, and N. B. Wood. An experimental study of the velocity distribution and transition to turbulence in the aorta. J. Fluid Mech. 52:137–160, 1972.

    Article  Google Scholar 

  22. Prakash, S., and C. R. Ethier. Requirements for mesh resolution in 3D computational hemodynamics. J. Biomech. Eng. 123:134–144, 2001.

    Article  CAS  PubMed  Google Scholar 

  23. Qian, Y., H. Takao, K. Fukui, M. Umezu, T. Ishibashi, and Y. Murayama. Computational risk parameter analysis and geometric estimation for cerebral aneurysm growth and rupture. Stroke 39:527–729, 2008.

    Article  Google Scholar 

  24. Rodriguez, E., M. Al-Ahmadi, and T. L. Spray. Surgical approach to hyploplastic left heart syndrome Norwood Stage I, Multimedia manual of cardio-thoracic surgery. European Association for Cardio-thoracic Surgery, 2007.

  25. Steinke, W., and M. Hennerici. Three-dimensional ultrasound imaging of carotid artery plaques. J. Cardiovasc. Technol. 8:15–22, 1989.

    Google Scholar 

  26. Steinman, D. A. Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann. Biomed. Eng. 30:483–497, 2002.

    Article  PubMed  Google Scholar 

  27. Steinman, D. A., J. S. Milner, C. J. Norley, S. P. Lownie, and D. W. Holdsworth. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. Am. Soc. Neuroradiol. 24:559–566, 2003.

    Google Scholar 

  28. Tang, T. D. Periodic flow in a bifurcating tube at moderate Reynolds number. PhD dissertation, Georgia Institute of Technology, Atlanta, 1990.

  29. Taubin, G. A signal processing approach to fair surface design. Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 351–358, 1995.

  30. Whitehead, K. K., K. Pekkan, H. D. Kitajima, S. M. Paridon, A. P. Yoganathan, and M. A. Fogel. Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 116:166–171, 2007.

    Article  Google Scholar 

  31. Younis, H. F., M. R. Kaazempur-Mofrad, C. Chung, R. C. Chan, and R. D. Kamm. Computational analysis of the effects of exercise on hemodynamics in the carotid bifurcation. Ann. Biomed. Eng. 31:995–1006, 2003.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) for supporting this research; grant number A09314800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Qian.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, Y., Liu, J.L., Itatani, K. et al. Computational Hemodynamic Analysis in Congenital Heart Disease: Simulation of the Norwood Procedure. Ann Biomed Eng 38, 2302–2313 (2010). https://doi.org/10.1007/s10439-010-9978-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9978-5

Keywords

Navigation