Skip to main content
Log in

The Influence of Strut-Connectors in Stented Vessels: A Comparison of Pulsatile Flow Through Five Coronary Stents

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript


The design of coronary stents has evolved significantly over the past two decades. However, they still face the problem of in-stent restenosis, formation of neointima within 12 months of the implant. The biological response after stent implantation depends on various factors including the stent geometry which alters the hemodynamics. This study takes five different coronary stent designs, used in clinical practice, and explores the hemodynamic differences arising due to the difference in their design. Of particular interest is the design of the segments (connectors) that connect two struts. Pulsatile blood flow analysis is performed for each stent, using 3-D computational fluid dynamics (CFD), and various flow features viz. recirculation zones, velocity profiles, wall shear stress (WSS) patterns, and oscillatory shear indices are extracted for comparison. Vessel wall regions with abnormal flow features, particularly low, reverse, and oscillating WSS, are usually more susceptible to restenosis. Unlike previous studies, which have tried to study the effect of design parameters such as strut thickness and strut spacing on hemodynamics, this work investigates the differences in the flow arising purely due to differences in stent-shape, other parameters being similar. Two factors, the length of the connectors in the cross-flow direction and their alignment with the main flow, are found to affect the hemodynamic performance. This study also formulates a design index (varying from 18.81% to 24.91% for stents used in this study) that quantifies the flow features that could affect restenosis rates and which, in future, could be used for optimization studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others



Computational fluid dynamics


Wall shear stress


Coronary artery disease


Bare metal stents


Drug eluting stents


Stent thrombosis


Laser doppler velocimeter


Left anterior descending


Endothelial cell


Finite element analysis


Non-uniform rational B-splines


Modified oscillatory shear index


Hemodynamic low and reverse flow index


  1. Anderson, R., F. Fath-Ordoubadi, S. Younas, A. Bainbridge, R. Swallow, K. D. Dawkins, and N. P. Curzen. Drug-eluting stents for the treatment of in stent restenosis—“real world” double centre experience in consecutive patients. Int. J. Cardiovasc. Interv. 7:188–192, 2005.

    Google Scholar 

  2. Balossino, R., F. Gervaso, F. Migliavacca, and G. Dubini. Effects of different stent designs on local hemodynamics in stented arteries. J. Biomech. 41:1053–1061, 2008.

    Article  PubMed  Google Scholar 

  3. Benard, N., R. Perrault, and D. Coisne. Computational approach to estimating the effects of blood properties on changes in intra-stent flow. Ann. Biomed. Eng. 34:1259–1271, 2006.

    Article  PubMed  Google Scholar 

  4. Berger, S. A., and L. Talbot. Flow in curved pipes. Annu. Rev. Fluid. Mech. 15:461–512, 1983.

    Article  Google Scholar 

  5. Berry, J. L., A. Santamaria, J. E. Moore Jr., S. Roychowdhury, and W. D. Routh. Experimental and computational flow evaluation of coronary stents. Ann. Biomed. Eng. 28:386–398, 2000.

    Article  CAS  PubMed  Google Scholar 

  6. Bressloff, N. W. Parametric geometry exploration of the human carotid artery bifurcation. J. Biomech. 40:2483–2491, 2007.

    Article  PubMed  Google Scholar 

  7. Brown, D. A., E. W. Lee, C. T. Loh, and S. T. Kee. A new wave in treatment of vascular occlusive disease: biodegradable stents—clinical experience and scientific principles. J. Vasc. Intervent. Radiol. 20:315–325, 2009.

    Article  Google Scholar 

  8. DePaola, N., M. A. Gimbrone, P. F. Davies, and C. F. Dewey Jr. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. Vasc. Biol. 12:1254–1257, 1992.

    CAS  Google Scholar 

  9. Eisenberg, M. J. Drug-eluting stents: some bare facts. The Lancet 364:1466–1467, 2004.

    Article  CAS  Google Scholar 

  10. Faik, I., R. Mongrain, R. L. Leask, J. Rodes-Cabau, E. Larose, and O. Bertrand. Time-dependent 3D simulations of the hemodynamics in a stented coronary artery. Biomed. Mater. 2:S28–S37, 2007.

    Article  CAS  PubMed  Google Scholar 

  11. Frank, A. O., P. Walsh, and J. Moore Jr. Computational fluid dynamics and stent design. Artif. Organs 6(7):614–621, 2002.

    Article  Google Scholar 

  12. Henry, F. S. Flow in stented arteries. In: Intra- and Extracorporeal Cardiovascular Fluid Dynamics, Vol. 2, edited by P. Vendonck and K. Perktold. Southampton, UK: WIT Press, 2000, pp. 333–364.

    Google Scholar 

  13. Hobson, A., and N. Curzen. Improving outcomes with antiplatelet therapies in percutaneous coronary intervention and stenting. Thromb. Haemostasis. 101:23–30, 2009.

    CAS  Google Scholar 

  14. Jimenez, J. M., and P. F. Davies. Hemodynamically driven stent strut design. Ann. Biomed. Eng. 37(7):1483–1494, 2009.

    Article  PubMed  Google Scholar 

  15. Kastrati, A., J. Mehilli, J. Dirschinger, F. Dotzer, H. Schuhlen, F. J. Neumann, M. Fleckenstein, C. Pfafferott, M. Seyfarth, and A. Schomig. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 103:2816–2821, 2001.

    CAS  PubMed  Google Scholar 

  16. Kastrati, A., J. Mehilli, J. Dirschinger, J. Pache, K. Ulm, H. Schuhlen, M. Seyfarth, C. Schmitt, R. Blasini, F. J. Neumann, and A. Schomig. Restenosis after coronary placement of various stent types. Am. J. Cardiol. 87:34–39, 2001.

    Article  CAS  PubMed  Google Scholar 

  17. Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid. Mech. 29:399–434, 1997.

    Article  Google Scholar 

  18. Ku, D. N., C. K. Zarins, D. P. Giddens, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque localization and low and oscillating shear stress. Arteriosclerosis 5:292–302, 1985.

    Google Scholar 

  19. LaDisa Jr., J. F., I. Guler, L. E. Olson, D. A. Hettrick, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Ann. Biomed. Eng. 31:972–980, 2003.

    Article  PubMed  Google Scholar 

  20. LaDisa Jr., J. F., G. Ismail, L. E. Olson, S. H. Audi, D. A. Hettrick, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J. Appl. Physiol. 97:424–430, 2004.

    Article  PubMed  Google Scholar 

  21. Perktold, K., M. Hofer, G. Rappitsch, M. Loew, B. D. Kuban, and M. H. Friedman. Validated computation of physiologic flow in a realistic coronary artery branch. J. Biomech. 31:217–228, 1998.

    Article  CAS  PubMed  Google Scholar 

  22. Rajamohan, D., R. K. Banerjee, L. H. Back, A. A. Ibrahim, and M. A. Jog. Developing pulsatile flow in a deployed coronary stent. Trans. ASME J. Biomed. Eng. 128:347–359, 2006.

    Article  Google Scholar 

  23. Rogers, C., and E. R. Edelman. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation 91:2995–3001, 1995.

    CAS  PubMed  Google Scholar 

  24. Seo, T., L. G. Schachter, and A. I. Barakat. Computational study of fluid mechanical disturbance induced by endovascular stents. Ann. Biomed. Eng. 33:444–456, 2005.

    Article  PubMed  Google Scholar 

  25. Serruys, P. W. Handbook of Coronary Stents, 4th edn. Martin Dunitz Publishers, 1997.

  26. Weblink. Art-stent website, 2009.

  27. Weblink. Biomatrix stent website, 2009.

  28. Wentzel, J. J., R. Krams, J. C. H. Schuurbiers, J. A. Oomen, J. Kloet, W. J. V. D. Giessen, P. W. Serruys, and C. J. Slager. Relationship between neointimal thickness and shear stress after wallstent implantation in human coronary arteries. Circulation 103:1740–1745, 2001.

    CAS  PubMed  Google Scholar 

  29. Zunino, P., C. D’Angelo, L. Pertini, C. Vergara, C. Capelli, and F. Migliavacca. Numerical simulation of drug eluting coronary stents: mechanics, fluid dynamics and drug release. Comput. Methods Appl. Mech. Eng. 198:3633–3644, 2009.

    Article  Google Scholar 

Download references

Conflict of Interest

Pant, Bressloff, and Forrester have no financial relationships with any organizations that could influence this work. Curzen is involved in unrestricted research grants with Medtronic and Medicell. He also advises Medtronic, Boston Scientific, Cordis, Abbott, and Lilly.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Neil W. Bressloff.

Additional information

Associate Editor Scott I. Simon oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pant, S., Bressloff, N.W., Forrester, A.I.J. et al. The Influence of Strut-Connectors in Stented Vessels: A Comparison of Pulsatile Flow Through Five Coronary Stents. Ann Biomed Eng 38, 1893–1907 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: