Annals of Biomedical Engineering

, Volume 38, Issue 5, pp 1893–1907 | Cite as

The Influence of Strut-Connectors in Stented Vessels: A Comparison of Pulsatile Flow Through Five Coronary Stents

  • Sanjay Pant
  • Neil W. Bressloff
  • Alexander I. J. Forrester
  • Nick Curzen


The design of coronary stents has evolved significantly over the past two decades. However, they still face the problem of in-stent restenosis, formation of neointima within 12 months of the implant. The biological response after stent implantation depends on various factors including the stent geometry which alters the hemodynamics. This study takes five different coronary stent designs, used in clinical practice, and explores the hemodynamic differences arising due to the difference in their design. Of particular interest is the design of the segments (connectors) that connect two struts. Pulsatile blood flow analysis is performed for each stent, using 3-D computational fluid dynamics (CFD), and various flow features viz. recirculation zones, velocity profiles, wall shear stress (WSS) patterns, and oscillatory shear indices are extracted for comparison. Vessel wall regions with abnormal flow features, particularly low, reverse, and oscillating WSS, are usually more susceptible to restenosis. Unlike previous studies, which have tried to study the effect of design parameters such as strut thickness and strut spacing on hemodynamics, this work investigates the differences in the flow arising purely due to differences in stent-shape, other parameters being similar. Two factors, the length of the connectors in the cross-flow direction and their alignment with the main flow, are found to affect the hemodynamic performance. This study also formulates a design index (varying from 18.81% to 24.91% for stents used in this study) that quantifies the flow features that could affect restenosis rates and which, in future, could be used for optimization studies.


Stents Restenosis Computational fluid dynamics Coronary artery Pulsatile blood flow 



Computational fluid dynamics


Wall shear stress


Coronary artery disease


Bare metal stents


Drug eluting stents


Stent thrombosis


Laser doppler velocimeter


Left anterior descending


Endothelial cell


Finite element analysis


Non-uniform rational B-splines


Modified oscillatory shear index


Hemodynamic low and reverse flow index


Conflict of Interest

Pant, Bressloff, and Forrester have no financial relationships with any organizations that could influence this work. Curzen is involved in unrestricted research grants with Medtronic and Medicell. He also advises Medtronic, Boston Scientific, Cordis, Abbott, and Lilly.


  1. 1.
    Anderson, R., F. Fath-Ordoubadi, S. Younas, A. Bainbridge, R. Swallow, K. D. Dawkins, and N. P. Curzen. Drug-eluting stents for the treatment of in stent restenosis—“real world” double centre experience in consecutive patients. Int. J. Cardiovasc. Interv. 7:188–192, 2005.Google Scholar
  2. 2.
    Balossino, R., F. Gervaso, F. Migliavacca, and G. Dubini. Effects of different stent designs on local hemodynamics in stented arteries. J. Biomech. 41:1053–1061, 2008.CrossRefPubMedGoogle Scholar
  3. 3.
    Benard, N., R. Perrault, and D. Coisne. Computational approach to estimating the effects of blood properties on changes in intra-stent flow. Ann. Biomed. Eng. 34:1259–1271, 2006.CrossRefPubMedGoogle Scholar
  4. 4.
    Berger, S. A., and L. Talbot. Flow in curved pipes. Annu. Rev. Fluid. Mech. 15:461–512, 1983.CrossRefGoogle Scholar
  5. 5.
    Berry, J. L., A. Santamaria, J. E. Moore Jr., S. Roychowdhury, and W. D. Routh. Experimental and computational flow evaluation of coronary stents. Ann. Biomed. Eng. 28:386–398, 2000.CrossRefPubMedGoogle Scholar
  6. 6.
    Bressloff, N. W. Parametric geometry exploration of the human carotid artery bifurcation. J. Biomech. 40:2483–2491, 2007.CrossRefPubMedGoogle Scholar
  7. 7.
    Brown, D. A., E. W. Lee, C. T. Loh, and S. T. Kee. A new wave in treatment of vascular occlusive disease: biodegradable stents—clinical experience and scientific principles. J. Vasc. Intervent. Radiol. 20:315–325, 2009.CrossRefGoogle Scholar
  8. 8.
    DePaola, N., M. A. Gimbrone, P. F. Davies, and C. F. Dewey Jr. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. Vasc. Biol. 12:1254–1257, 1992.Google Scholar
  9. 9.
    Eisenberg, M. J. Drug-eluting stents: some bare facts. The Lancet 364:1466–1467, 2004.CrossRefGoogle Scholar
  10. 10.
    Faik, I., R. Mongrain, R. L. Leask, J. Rodes-Cabau, E. Larose, and O. Bertrand. Time-dependent 3D simulations of the hemodynamics in a stented coronary artery. Biomed. Mater. 2:S28–S37, 2007.CrossRefPubMedGoogle Scholar
  11. 11.
    Frank, A. O., P. Walsh, and J. Moore Jr. Computational fluid dynamics and stent design. Artif. Organs 6(7):614–621, 2002.CrossRefGoogle Scholar
  12. 12.
    Henry, F. S. Flow in stented arteries. In: Intra- and Extracorporeal Cardiovascular Fluid Dynamics, Vol. 2, edited by P. Vendonck and K. Perktold. Southampton, UK: WIT Press, 2000, pp. 333–364.Google Scholar
  13. 13.
    Hobson, A., and N. Curzen. Improving outcomes with antiplatelet therapies in percutaneous coronary intervention and stenting. Thromb. Haemostasis. 101:23–30, 2009.Google Scholar
  14. 14.
    Jimenez, J. M., and P. F. Davies. Hemodynamically driven stent strut design. Ann. Biomed. Eng. 37(7):1483–1494, 2009.CrossRefPubMedGoogle Scholar
  15. 15.
    Kastrati, A., J. Mehilli, J. Dirschinger, F. Dotzer, H. Schuhlen, F. J. Neumann, M. Fleckenstein, C. Pfafferott, M. Seyfarth, and A. Schomig. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 103:2816–2821, 2001.PubMedGoogle Scholar
  16. 16.
    Kastrati, A., J. Mehilli, J. Dirschinger, J. Pache, K. Ulm, H. Schuhlen, M. Seyfarth, C. Schmitt, R. Blasini, F. J. Neumann, and A. Schomig. Restenosis after coronary placement of various stent types. Am. J. Cardiol. 87:34–39, 2001.CrossRefPubMedGoogle Scholar
  17. 17.
    Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid. Mech. 29:399–434, 1997.CrossRefGoogle Scholar
  18. 18.
    Ku, D. N., C. K. Zarins, D. P. Giddens, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque localization and low and oscillating shear stress. Arteriosclerosis 5:292–302, 1985.Google Scholar
  19. 19.
    LaDisa Jr., J. F., I. Guler, L. E. Olson, D. A. Hettrick, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Ann. Biomed. Eng. 31:972–980, 2003.CrossRefPubMedGoogle Scholar
  20. 20.
    LaDisa Jr., J. F., G. Ismail, L. E. Olson, S. H. Audi, D. A. Hettrick, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J. Appl. Physiol. 97:424–430, 2004.CrossRefPubMedGoogle Scholar
  21. 21.
    Perktold, K., M. Hofer, G. Rappitsch, M. Loew, B. D. Kuban, and M. H. Friedman. Validated computation of physiologic flow in a realistic coronary artery branch. J. Biomech. 31:217–228, 1998.CrossRefPubMedGoogle Scholar
  22. 22.
    Rajamohan, D., R. K. Banerjee, L. H. Back, A. A. Ibrahim, and M. A. Jog. Developing pulsatile flow in a deployed coronary stent. Trans. ASME J. Biomed. Eng. 128:347–359, 2006.CrossRefGoogle Scholar
  23. 23.
    Rogers, C., and E. R. Edelman. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation 91:2995–3001, 1995.PubMedGoogle Scholar
  24. 24.
    Seo, T., L. G. Schachter, and A. I. Barakat. Computational study of fluid mechanical disturbance induced by endovascular stents. Ann. Biomed. Eng. 33:444–456, 2005.CrossRefPubMedGoogle Scholar
  25. 25.
    Serruys, P. W. Handbook of Coronary Stents, 4th edn. Martin Dunitz Publishers, 1997.Google Scholar
  26. 26.
    Weblink. Art-stent website, 2009.
  27. 27.
    Weblink. Biomatrix stent website, 2009.
  28. 28.
    Wentzel, J. J., R. Krams, J. C. H. Schuurbiers, J. A. Oomen, J. Kloet, W. J. V. D. Giessen, P. W. Serruys, and C. J. Slager. Relationship between neointimal thickness and shear stress after wallstent implantation in human coronary arteries. Circulation 103:1740–1745, 2001.PubMedGoogle Scholar
  29. 29.
    Zunino, P., C. D’Angelo, L. Pertini, C. Vergara, C. Capelli, and F. Migliavacca. Numerical simulation of drug eluting coronary stents: mechanics, fluid dynamics and drug release. Comput. Methods Appl. Mech. Eng. 198:3633–3644, 2009.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Sanjay Pant
    • 1
  • Neil W. Bressloff
    • 1
  • Alexander I. J. Forrester
    • 1
  • Nick Curzen
    • 2
    • 3
  1. 1.School of Engineering SciencesUniversity of SouthamptonSouthamptonUK
  2. 2.Southampton University Hospitals NHS TrustSouthamptonUK
  3. 3.School of MedicineUniversity of SouthamptonSouthamptonUK

Personalised recommendations