Skip to main content
Log in

Applicability of Body Surface Potential Map in Computerized Optimization of Biventricular Pacing

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Biventricular pacing (BVP) could be improved by identifying the patient-specific optimal electrode positions. Body surface potential map (BSPM) is a non-invasive technique for obtaining the electrophysiology and pathology of a patient. The study proposes the use of BSPM as input for an automated non-invasive strategy based on a personalized computer model of the heart, to identify the patient pathology and specific optimal treatment with BVP devices. The anatomy of a patient suffering from left bundle branch block and myocardial infarction is extracted from a series of MR data sets. The clinical measurements of BSPM are used to parameterize the computer model of the heart to represent the individual pathology. Cardiac electrophysiology is simulated with ten Tusscher cell model and excitation propagation is calculated with adaptive cellular automaton, at physiological and pathological conduction levels. The optimal electrode configurations are identified by evaluating the QRS error between healthy and pathology case with/without pacing. Afterwards, the simulated ECGs for optimal pacing are compared to the post-implantation clinically measured ECGs. Both simulation and clinical optimization methods identified the right ventricular (RV) apex and the LV posterolateral regions as being the optimal electrode configuration for the patient. The QRS duration is reduced both in measured and simulated ECG after implantation with 20 and 14%, respectively. The optimized electrode positions found by simulation are comparable to the ones used in hospital. The similarity in QRS duration reduction between measured and simulated ECG signals indicates the success of the method. The computer model presented in this work is a suitable tool to investigate individual pathologies. The personalized model could assist therapy planning of BVP in patients with congestive heart failure. The proposed method could be used as prototype for further clinically oriented investigations of computerized optimization of biventricular pacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Auricchio, A., and C. Fantoni. Cardiac resynchronization therapy in heart failure. Ital. Heart. J. 6:256–260, 2005.

    PubMed  Google Scholar 

  2. Bax, J. J., S. G. Molhoek, L. van Erven, P. J. Voogd, S. Somer, E. Boersma, P. Steendijk, M. J. Schalij, and E. E. Van der Wall. Usefulness of myocardial tissue Doppler echocardiography to evaluate left ventricular dyssynchrony before and after biventricular pacing in patients with idiopathic dilated cardiomyopathy. Am. J. Cardiol. 91:94–97, 2003.

    Article  PubMed  Google Scholar 

  3. Cerqueira, M. D., N. J. Weissman, V. Dilsizian, A. K. Jacobs, S. Kaul, W. K. Laskey, D. J. Pennell, J. A. Rumberger, T. Ryan, and M. S. Verani. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int. J. Cardiovasc. Imaging 18:539–542, 2002.

    PubMed  Google Scholar 

  4. Farina, D. Forward and inverse problems of electrocardiography: clinical investigations. PhD thesis, Universitätsverlag Karlsruhe, 2008.

  5. Huiskamp, G., and A. van Oosterom. Tailored versus realistic geometry in the inverse problem of electrocardiography. IEEE Trans. Biomed. Eng. 36:827–835, 1989.

    Article  PubMed  CAS  Google Scholar 

  6. Jiang, Y., D. Farina, and O. Dossel. Modeling and reconstruction of myocardial infarction. Zuerich: Deutsche Gesellschaft für Biomedizinische Technik, 2006.

  7. Kass, D. A., C. H. Chen, C. Curry, M. Talbot, R. Berger, B. Fetics, and E. Nevo. Improved left ventricular mechanics from acute VDD pacing in patients with dilated cardiomyopathy and ventricular conduction delay. Circulation 99:1567–1573, 1999.

    PubMed  CAS  Google Scholar 

  8. Lux, R. L., A. K. Evans, M. J. Burgess, R. F. Wyatt, and J. A. Abildskov. Redundancy reduction for improved display and analysis of body surface potential maps. I. Spatial compression. Circ. Res. 49:186–196, 1981.

    PubMed  CAS  Google Scholar 

  9. Lux, R. L., C. R. Smith, R. F. Wyatt, and J. A. Abildskov. Limited lead selection for estimation of body surface potential maps in electrocardiography. IEEE Trans. Biomed. Eng. 25:270–276, 1978.

    Article  PubMed  CAS  Google Scholar 

  10. Marsan, N. A., J. J. Westenberg, L. F. Tops, C. Ypenburg, E. R. Holman, J. H. Reiber, A. de Roos, E. E. van der Wall, M. J. Schalij, J. R. Roelandt, and J. J. Bax. Comparison between tissue Doppler imaging and velocity-encoded magnetic resonance imaging for measurement of myocardial velocities, assessment of left ventricular dyssynchrony, and estimation of left ventricular filling pressures in patients with ischemic cardiomyopathy. Am. J. Cardiol. 102:1366–1372, 2008.

    Article  PubMed  Google Scholar 

  11. Meluzin, J., M. Novak, J. Mullerova, J. Krejci, P. Hude, M. Eisenberger, L. Dusek, I. Dvorak, and L. Spinarova. A fast and simple echocardiographic method of determination of the optimal atrioventricular delay in patients after biventricular stimulation. Pacing Clin. Electrophysiol. 27:58–64, 2004.

    Article  PubMed  Google Scholar 

  12. Miri, R., I. M. Graf, and O. Dossel. Efficiency of timing delays and electrode positions in optimization of biventricular pacing: a simulation study. IEEE Trans. Biomed. Eng. 56:2573–2582, 2009.

    Article  PubMed  Google Scholar 

  13. Miri, R., M. Reumann, D. Keller, D. Farina, and O. Dossel. Computer based optimization of biventricular pacing according to the left ventricular 17 myocardial segments. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1418–1421, 2007.

  14. Miri, R., M. Reumann, D. Keller, D. Farina, and O. Dossel. Comparison of the electrophysiologically based optimization methods with different pacing parameters in patient undergoing resynchronization treatment. In: The 30th Annual International Conference of the IEEE/EMBS. Vancouver, Canada: IEEE, 2008, pp. 1741–1744.

  15. Perego, G. B., R. Chianca, M. Facchini, A. Frattola, E. Balla, S. Zucchi, S. Cavaglia, I. Vicini, M. Negretto, and G. Osculati. Simultaneous vs. sequential biventricular pacing in dilated cardiomyopathy: an acute hemodynamic study. Eur. J. Heart Fail. 5:305–313, 2003.

    Article  PubMed  Google Scholar 

  16. Philippon, F. Cardiac resynchronization therapy: device-based medicine for heart failure. J. Card. Surg. 19:270–274, 2004.

    Article  PubMed  Google Scholar 

  17. Reumann, M., D. Farina, R. Miri, S. Lurz, B. Osswald, and O. Dossel. Computer model for the optimization of AV and VV delay in cardiac resynchronization therapy. Med. Biol. Eng. Comput. 45:845–854, 2007.

    Article  PubMed  Google Scholar 

  18. Robinson, M. R., and N. Curzen. Electrocardiographic body surface mapping: Potential tool for the detection of transient myocardial ischemia in the 21st century? Ann. Noninvasive Electrocardiol. 14:201–210, 2009.

    Article  PubMed  Google Scholar 

  19. Sandor, G., G. Kozmann, Z. Cserjes, N. Farkas, and I. Preda. Body surface potential field representation fidelity: analysis of map estimation procedures. J. Electrocardiol. 32:253–261, 1999.

    Article  PubMed  CAS  Google Scholar 

  20. Sermesant, M., K. Rhode, G. I. Sanchez-Ortiz, O. Camara, R. Andriantsimiavona, S. Hegde, D. Rueckert, P. Lambiase, C. Bucknall, E. Rosenthal, H. Delingette, D. L. Hill, N. Ayache, and R. Razavi. Simulation of cardiac pathologies using an electromechanical biventricular model and XMR interventional imaging. Med. Image Anal. 9:467–480, 2005.

    Article  PubMed  CAS  Google Scholar 

  21. Sogaard, P., H. Egeblad, W. Y. Kim, H. K. Jensen, A. K. Pedersen, B. O. Kristensen, and P. T. Mortensen. Tissue Doppler imaging predicts improved systolic performance and reversed left ventricular remodeling during long-term cardiac resynchronization therapy. J. Am. Coll. Cardiol. 40:723–730, 2002.

    Article  PubMed  Google Scholar 

  22. St John Sutton, M. G., T. Plappert, W. T. Abraham, A. L. Smith, D. B. DeLurgio, A. R. Leon, E. Loh, D. Z. Kocovic, W. G. Fisher, M. Ellestad, J. Messenger, K. Kruger, K. E. Hilpisch, and M. R. Hill. Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation 107:1985–1990, 2003.

    Article  PubMed  Google Scholar 

  23. Starck, J. L., E. J. Candes, and D. L. Donoho. The curvelet transform for image denoising. IEEE Trans. Image Process. 11:670–684, 2002.

    Article  PubMed  Google Scholar 

  24. Strickberger, S. A., J. Conti, E. G. Daoud, E. Havranek, M. R. Mehra, I. L. Pina, and J. Young. Patient selection for cardiac resynchronization therapy: from the Council on Clinical Cardiology Subcommittee on Electrocardiography and Arrhythmias and the Quality of Care and Outcomes Research Interdisciplinary Working Group, in collaboration with the Heart Rhythm Society. Circulation 111:2146–2150, 2005.

    Article  PubMed  Google Scholar 

  25. ten Tusscher, K. H., D. Noble, P. J. Noble, and A. V. Panfilov. A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286:H1573–H1589, 2004.

    Article  PubMed  Google Scholar 

  26. Thanigaraj, S., R. Chugh, K. B. Schechtman, L. V. Lee, R. L. Wade, and J. E. Perez. Defining left ventricular segmental and global function by echocardiographic intraventricular contrast flow patterns. Am. J. Cardiol. 85:65–68, 2000.

    Article  PubMed  CAS  Google Scholar 

  27. Tinati, M. A., and B. Mozaffary. A wavelet packets approach to electrocardiograph baseline drift cancellation. Int. J. Biomed. Imaging 2006:1–9, 2006.

    Article  Google Scholar 

  28. Toggweiler, S., M. Zuber, R. Kobza, M. Roos, P. Jamshidi, R. Meier, and P. Erne. Improved response to cardiac resynchronization therapy through optimization of atrioventricular and interventricular delays using acoustic cardiography: a pilot study. J. Card. Fail. 13:637–642, 2007.

    Article  PubMed  Google Scholar 

  29. Vesterinen, P., H. Hanninen, M. Karvonen, K. Lauerma, M. Holmstrom, M. Makijarvi, H. Vaananen, J. Nenonen, T. Katila, and L. Toivonen. Temporal analysis of the depolarization wave of healed myocardial infarction in body surface potential mapping. Ann. Noninvasive Electrocardiol. 9:234–242, 2004.

    Article  PubMed  Google Scholar 

  30. Yu, C. M., Y. S. Chan, Q. Zhang, G. W. Yip, C. K. Chan, L. C. Kum, L. Wu, A. P. Lee, Y. Y. Lam, and J. W. Fung. Benefits of cardiac resynchronization therapy for heart failure patients with narrow QRS complexes and coexisting systolic asynchrony by echocardiography. J. Am. Coll. Cardiol. 48:2251–2257, 2006.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raz Miri.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miri, R., Graf, I.M., Bayarri, J.V. et al. Applicability of Body Surface Potential Map in Computerized Optimization of Biventricular Pacing. Ann Biomed Eng 38, 865–875 (2010). https://doi.org/10.1007/s10439-010-9944-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9944-2

Keywords

Navigation