Skip to main content
Log in

Poisson’s Ratio and Strain Rate Dependency of the Constitutive Behavior of Spinal Dura Mater

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Knowledge of the mechanical behavior of spinal dura mater is important for a number of applications including the experimental and computational modeling of physiological phenomena and spinal cord trauma. However, mechanical characterization of dura mater is relatively sparse and is further compounded by the use of the tangent modulus as the sole measure of stiffness. This study aims to provide a more complete description of the mechanical properties of spinal dura mater, including the effect of strain rate. Bovine dura mater was tested under uniaxial tension in both the longitudinal and the circumferential directions at three different strain rates; 0.01, 0.1, and 1.0 s−1. An Ogden model was fitted to the resulting stress–stretch data. The morphology of the dura mater was assessed using Sirius red and H&E staining. No significant effect of the strain rate was found for the Ogden model parameters. Longitudinal specimens were significantly stronger and more deformable than circumferential samples, probably due to the structural arrangement of the collagen fibers. At low strains, however, the circumferential specimens were stiffer than the longitudinal ones. The findings of this study will allow more complete representations of the spinal dura mater to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10
FIGURE 11
FIGURE 12

Similar content being viewed by others

References

  1. Atlas, S. W., V. Regenbogen, L. F. Rogers, and K. S. Kim. The radiographic characterization of burst fractures of the spine. AJR Am. J. Roentgenol. 147:575–582, 1986.

    PubMed  CAS  Google Scholar 

  2. Bilston, L. E., and L. E. Thibault. The mechanical properties of the human cervical spinal cord in vitro. Ann. Biomed. Eng. 24:67–74, 1996.

    Article  PubMed  CAS  Google Scholar 

  3. Crisco, J. J., D. C. Moore, and R. D. McGovern. Strain-rate sensitivity of the rabbit MCL diminishes at traumatic loading rates. J. Biomech. 35:1379–1385, 2002.

    Article  PubMed  Google Scholar 

  4. Elliott, D. M., D. A. Narmoneva, and L. A. Setton. Direct measurement of the Poisson’s ratio of human patella cartilage in tension. J. Biomech. Eng. 124:223–228, 2002.

    Article  PubMed  Google Scholar 

  5. Fiford, R. J., and L. E. Bilston. The mechanical properties of rat spinal cord in vitro. J. Biomech. 38:1509–1515, 2005.

    Article  PubMed  Google Scholar 

  6. Hall, R. M., R. J. Oakland, R. K. Wilcox, and D. C. Barton. Spinal cord-fragment interactions following burst fracture: an in vitro model. J. Neurosurg. Spine 5:243–250, 2006.

    Article  PubMed  Google Scholar 

  7. Hewitt, J., F. Guilak, R. Glisson, and T. P. Vail. Regional material properties of the human hip joint capsule ligaments. J. Orthop. Res. 19:359–364, 2001.

    Article  PubMed  CAS  Google Scholar 

  8. Ichihara, K., T. Taguchi, I. Sakuramoto, S. Kawano, and S. Kawai. Mechanism of the spinal cord injury and the cervical spondylotic myelopathy: new approach based on the mechanical features of the spinal cord white and gray matter. J. Neurosurg. 99:278–285, 2003.

    PubMed  Google Scholar 

  9. Loth, F., M. A. Yardimci, and N. Alperin. Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. J. Biomech. Eng. 123:71–79, 2001.

    Article  PubMed  CAS  Google Scholar 

  10. Maikos, J. T., R. A. Elias, and D. I. Shreiber. Mechanical properties of dura mater from the rat brain and spinal cord. J. Neurotrauma 25:38–51, 2008.

    Article  PubMed  Google Scholar 

  11. Mazuchowski, E. L., and L. E. Thibault (2003). Biomechanical properties of the human spinal cord and pia mater. Summer Bioengineering Conference. Sonesta Beach Resort in Key Biscayne, FL, USA.

  12. Ogden, R. W. Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 326:565–584, 1972.

    Article  CAS  Google Scholar 

  13. Patin, D. J., E. C. Eckstein, K. Harum, and V. S. Pallares. Anatomic and biomechanical properties of human lumbar dura mater. Anesth. Analg. 76:535–540, 1993.

    Article  PubMed  CAS  Google Scholar 

  14. Reid, J. D. Effects of flexion-extension movements of the head and spine upon the spinal cord and nerve roots. J. Neurol. Neurosurg. Psychiatry 23:214–221, 1960.

    Article  PubMed  CAS  Google Scholar 

  15. Runza, M., R. Pietrabissa, S. Mantero, A. Albani, V. Quaglini, and R. Contro. Lumbar dura mater biomechanics: experimental characterization and scanning electron microscopy observations. Anesth. Analg. 88:1317–1321, 1999.

    Article  PubMed  CAS  Google Scholar 

  16. Tencer, A. F., B. L. Allen, Jr., and R. L. Ferguson. A biomechanical study of thoracolumbar spine fractures with bone in the canal. Part III. Mechanical properties of the dura and its tethering ligaments. Spine 10:741–747, 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Ting, T. C. T., and T. Chen. Poisson’s ratio for anisotropic elastic materials can have no bounds. Q. J. Mech. Appl. Math. 58:73–82, 2005.

    Article  Google Scholar 

  18. Tunituri, A. R. Elasticity of the spinal cord dura in the dog. J. Neurosurg. 47:391–396, 1977.

    Article  PubMed  CAS  Google Scholar 

  19. Wilcox, R. K., D. J. Allen, R. M. Hall, D. Limb, D. C. Barton, and R. A. Dickson. A dynamic investigation of the burst fracture process using a combined experimental and finite element approach. Eur. Spine J. 13:481–488, 2004.

    Article  PubMed  CAS  Google Scholar 

  20. Wilcox, R. K., L. E. Bilston, D. C. Barton, and R. M. Hall. Mathematical model for the viscoelastic properties of dura mater. J. Orthop. Sci. 8:432–434, 2003.

    Article  PubMed  Google Scholar 

  21. Woo, S. L., M. A. Gomez, and W. H. Akeson. The time and history-dependent viscoelastic properties of the canine medical collateral ligament. J. Biomech. Eng. 103:293–298, 1981.

    Article  PubMed  CAS  Google Scholar 

  22. Yuan, Q., L. Dougherty, and S. S. Margulies. In vivo human cervical spinal cord deformation and displacement in flexion. Spine 23:1677–1683, 1998.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was financially supported by the European Community, Contract MEST-CT-2005-020599.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Hall.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persson, C., Evans, S., Marsh, R. et al. Poisson’s Ratio and Strain Rate Dependency of the Constitutive Behavior of Spinal Dura Mater. Ann Biomed Eng 38, 975–983 (2010). https://doi.org/10.1007/s10439-010-9924-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9924-6

Keywords

Navigation