Skip to main content
Log in

Prediction of Mutation Positions in H5N1 Neuraminidases From Influenza A Virus by Means of Neural Network

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Quantification of mutation capacity within a protein could be a way to model the mutation relationship not only because history might not leave many cues on the causes for mutations but also the evolved protein might no longer be subject to previous mutation causes. Randomness should play a constant role in engineering mutations in proteins because randomness suggests the maximal probability of occurrence by which a protein would be constructed with the least time and energy to meet the speed of rapidly changing environments. Since 1999, we have developed three approaches for quantifying of randomness of protein by which each amino acid has three numeric values. In this study, we model our three random numeric values in each amino acid with occurrence and non-occurrence of mutation, which are classified as unity and zero, using a 3-6-1 feedforward backpropagation neural network to predict the mutation positions in H5N1 neuraminidases. The results show that the neural network can capture the mutation relationship as measured by prediction sensitivity, specificity, and total correct rate. With the help of translation probability between RNA codes and mutated amino acids, we predict the would-be-mutated amino acids at predicted mutation positions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Demuth, H., and M. Beale. Neural Network Toolbox for Use With MatLab. User’s Guide, Version 4, 2001.

  2. Draper, N. R., and H. Smith. Applied Regression Analysis (2nd ed.). New York: Wiley, 1981.

    Google Scholar 

  3. Everitt, B. S. Chance Rules: An Informal Guide to Probability, Risk, and Statistics. New York: Springer, 1999.

    Google Scholar 

  4. Feller, W. An Introduction to Probability Theory and Its Applications (3rd ed.)., Vol. I. New York: Wiley, 1968.

    Google Scholar 

  5. Gao, N., S. Yan, and G. Wu. Pattern of positions sensitive to mutations in human haemoglobin α-chain. Protein Pept. Lett. 13:101–107, 2006.

    Article  PubMed  CAS  Google Scholar 

  6. Garman, E., and G. Laver. Controlling influenza by inhibiting the virus’s neuraminidase. Curr. Drug Targets 5:119–136, 2004.

    Article  PubMed  CAS  Google Scholar 

  7. Healy, M. J. R. Outliers in clinical chemistry quality-control schemes. Clin. Chem. 25:675–677, 1979.

    PubMed  CAS  Google Scholar 

  8. Hochgürtel, M., H. Kroth, D. Piecha, M. W. Hofmann, C. Nicolau, S. Krause, O. Schaaf, G. Sonnenmoser, and A. V. Eliseev. Target-induced formation of neuraminidase inhibitors from in vitro virtual combinatorial libraries. Proc. Natl Acad. Sci. USA 99:3382–3387, 2002.

    Article  PubMed  CAS  Google Scholar 

  9. Hosmer Jr., D. W., and S. Lemeshow. Applied Logistic Regression. New York: Wiley, 2000.

    Book  Google Scholar 

  10. Influenza virus resources. http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/multiple.cgi, 2006.

  11. The MathWorks, Inc. MatLab—The Language of Technical Computing (Version 6.1.0.450, Release 12.1, 2001), 1984–2001.

  12. Mihajlovic, M. L., and P. M. Mitrasinovic. Another look at the molecular mechanism of the resistance of H5N1 influenza A virus neuraminidase (NA) to oseltamivir (OTV). Biophys. Chem. 136:152–158, 2008.

    Article  PubMed  CAS  Google Scholar 

  13. Mihajlovic, M. L., and P. M. Mitrasinovic. Some novel insights into the binding of oseltamivir and zanamivir to H5N1 and N9 influenza virus neuraminidases: a homology modeling and flexible docking study. J. Serb. Chem. Soc. 74:1–13, 2009.

    Article  CAS  Google Scholar 

  14. Mihajlovic, M. L., and P. M. Mitrasinovic. Applications of the ArgusLab4/AScore protocol in the structure-based binding affinity prediction of various inhibitors of group-1 and group-2 influenza virus neuraminidases (NAs). Mol. Simul. 35:311–324, 2009.

    Article  CAS  Google Scholar 

  15. Mitrasinovic, P. M. On the structure-based design of novel inhibitors of H5N1 influenza A virus neuraminidase (NA). Biophys. Chem. 140:35–38, 2009.

    Article  PubMed  CAS  Google Scholar 

  16. Moscona, A. Neuraminidase inhibitors for influenza. N. Engl. J. Med. 353:1363–1373, 2005.

    Article  PubMed  CAS  Google Scholar 

  17. Moscona, A. Global transmission of oseltamivir-resistant influenza. N. Engl. J. Med. 360:953–956, 2009.

    Article  PubMed  CAS  Google Scholar 

  18. Oxford, J., S. Balasingam, and R. Lambkin. A new millennium conundrum: how to use a powerful class of influenza anti-neuraminidase drugs (NAIs) in the community. J. Antimicrob. Chemother. 53:133–136, 2004.

    Article  PubMed  CAS  Google Scholar 

  19. SYSTAT Software Inc. Systat for Windows, version 11.00.01, 2004.

  20. Wang, M. Z., C. Y. Tai, and D. B. Mendel. Mechanism by which mutations at his274 alter sensitivity of influenza a virus n1 neuraminidase to oseltamivir carboxylate and zanamivir. Antimicrob. Agents Chemother. 46:3809–3816, 2002.

    Article  PubMed  CAS  Google Scholar 

  21. Wu, G. The first and second order Markov chain analysis on amino acids sequence of human haemoglobin α-chain and its three variants with low O2 affinity. Comp. Haematol. Int. 9:148–151, 1999.

    Article  CAS  Google Scholar 

  22. Wu, G. Frequency and Markov chain analysis of amino-acid sequence of human glutathione reductase. Biochem. Biophys. Res. Commun. 268:823–826, 2000.

    Article  PubMed  CAS  Google Scholar 

  23. Wu, G. Frequency and Markov chain analysis of amino-acid sequence of human tumor necrosis factor. Cancer Lett. 153:145–150, 2000.

    Article  PubMed  CAS  Google Scholar 

  24. Wu, G. Frequency and Markov chain analysis of amino-acid sequences of mouse p53. Hum. Exp. Toxicol. 19:535–539, 2000.

    Article  PubMed  CAS  Google Scholar 

  25. Wu, G. Frequency and Markov chain analysis of the amino acid sequence of human alcohol dehydrogenase α-chain. Alcohol Alcohol. 35:302–306, 2000.

    PubMed  CAS  Google Scholar 

  26. Wu, G. Frequency and Markov chain analysis of the amino-acid sequence of sheep p53 protein. J. Biochem. Mol. Biol. Biophys. 4:179–185, 2000.

    CAS  Google Scholar 

  27. Wu, G. The first, second and third order Markov chain analysis on amino acids sequence of human tyrosine aminotransferase and its variant causing tyrosinemia type II. Pediatr. Relat. Top. 39:37–47, 2000.

    Google Scholar 

  28. Wu, G. The first, second, third and fourth order Markov chain analysis on amino acids sequence of human dopamine β-hydroxylase. Mol. Psychiatry 5:448–451, 2000.

    Article  PubMed  CAS  Google Scholar 

  29. Wu, G., and S. Yan. Frequency and Markov chain analysis of amino-acids sequence of human platelet-activating factor acetylhydrolase α-subunit and its variant causing the lissencephaly syndrome. Pediatr. Relat. Top. 39:513–526, 2000.

    Google Scholar 

  30. Wu, G., and S. Yan. Prediction of two- and three-amino acid sequence of human acute myeloid leukemia 1 protein from its amino acid composition. Comp. Haematol. Int. 10:85–89, 2000.

    Article  CAS  Google Scholar 

  31. Wu, G., and S. Yan. Prediction of two- and three-amino-acid sequences of Citrobacter freundii β-lactamase from its amino acid composition. J. Mol. Microbiol. Biotechnol. 2:277–281, 2000.

    PubMed  CAS  Google Scholar 

  32. Wu, G., and S. Yan. Prediction of distributions of amino acids and amino acid pairs in human haemoglobin α-chain and its seven variants causing α-thalassemia from their occurrences according to the random mechanism. Comp. Haematol. Int. 10:80–84, 2000.

    Article  CAS  Google Scholar 

  33. Wu, G., and S. Yan. Frequency and Markov chain analysis of amino-acid sequences of human connective tissue growth factor. J. Mol. Model. 5:120–124, 2001.

    Google Scholar 

  34. Wu, G., and S. Yan. Prediction of presence and absence of two- and three-amino-acid sequence of human monoamine oxidase B from its amino acid composition according to the random mechanism. Biomol. Eng. 18:23–27, 2001.

    Article  PubMed  CAS  Google Scholar 

  35. Wu, G., and S. Yan. Prediction of presence and absence of two- and three-amino-acid sequence of human tyrosinase from their amino acid composition and related changes in human tyrosinase variant causing oculocutaneous albinism. Pediatr. Relat. Top. 40:153–166, 2001.

    Google Scholar 

  36. Wu, G., and S. Yan. Analysis of distributions of amino acids, amino acid pairs and triplets in human insulin precursor and four variants from their occurrences according to the random mechanism. J. Biochem. Mol. Biol. Biophys. 5:293–300, 2001.

    CAS  Google Scholar 

  37. Wu, G., and S. Yan. Analysis of distributions of amino acids and amino acid pairs in human tumor necrosis factor precursor and its eight variants according to random mechanism. J. Mol. Model. 7:318–323, 2001.

    CAS  Google Scholar 

  38. Wu, G., and S. Yan. Determination of amino acid pairs sensitive to variants in human low-density lipoprotein receptor precursor by means of a random approach. J. Biochem. Mol. Biol. Biophys. 6:401–406, 2002.

    Article  PubMed  CAS  Google Scholar 

  39. Wu, G., and S. Yan. Estimation of amino acid pairs sensitive to variants in human phenylalanine hydroxylase protein by means of a random approach. Peptides 23:2085–2090, 2002.

    Article  PubMed  CAS  Google Scholar 

  40. Wu, G., and S. Yan. Random analysis of presence and absence of two- and three-amino-acid sequences and distributions of amino acids, two- and three-amino-acid sequences in bovine p53 protein. Mol. Biol. Today 3:31–37, 2002.

    CAS  Google Scholar 

  41. Wu, G., and S. Yan. Analysis of distributions of amino acids in the primary structure of apoptosis regulator Bcl-2 family according to the random mechanism. J. Biochem. Mol. Biol. Biophys. 6:407–414, 2002.

    Article  PubMed  CAS  Google Scholar 

  42. Wu, G., and S. Yan. Analysis of distributions of amino acids in the primary structure of tumor suppressor p53 family according to the random mechanism. J. Mol. Model. 8:191–198, 2002.

    Article  PubMed  CAS  Google Scholar 

  43. Wu, G., and S. Yan. Randomness in the primary structure of protein: methods and implications. Mol. Biol. Today 3:55–69, 2002.

    CAS  Google Scholar 

  44. Wu, G., and S. Yan. Analysis of amino acid pairs sensitive to variants in human collagen α5(IV) chain precursor by means of a random approach. Peptides 24:347–352, 2003.

    Article  PubMed  CAS  Google Scholar 

  45. Wu, G., and S. Yan. Determination of amino acid pairs in human haemoglobulin α-chain sensitive to variants by means of a random approach. Comp. Clin. Path. 12:21–25, 2003.

    Article  CAS  Google Scholar 

  46. Wu, G., and S. Yan. Determination of amino acid pairs in human p53 protein sensitive to mutations/variants by means of a random approach. J. Mol. Model. 9:337–341, 2003.

    Article  PubMed  CAS  Google Scholar 

  47. Wu, G., and S. Yan. Determination of amino acid pairs in Von Hippel-Lindau disease tumour suppressor (G7 protein) sensitive to variants by means of a random approach. J. Appl. Res. 3:512–520, 2003.

    CAS  Google Scholar 

  48. Wu, G., and S. Yan. Determination of amino acid pairs sensitive to variants in human β-glucocerebrosidase by means of a random approach. Protein Eng. 16:195–199, 2003.

    Article  PubMed  CAS  Google Scholar 

  49. Wu, G., and S. Yan. Determination of amino acid pairs sensitive to variants in human Bruton’s tyrosine kinase by means of a random approach. Mol. Simul. 29:249–254, 2003.

    Article  CAS  Google Scholar 

  50. Wu, G., and S. Yan. Determination of amino acid pairs sensitive to variants in human coagulation factor IX precursor by means of a random approach. J. Biomed. Sci. 10:451–454, 2003.

    Article  PubMed  Google Scholar 

  51. Wu, G., and S. Yan. Prediction of amino acid pairs sensitive to mutations in the spike protein from SARS related coronavirus. Peptides 24:1837–1845, 2003.

    Article  PubMed  CAS  Google Scholar 

  52. Wu, G., and S. Yan. Amino acid pairs sensitive to variants in human collagen α1(I) chain precursor. EXCLI J. 3:10–19, 2004.

    Google Scholar 

  53. Wu, G., and S. Yan. Susceptible amino acid pairs in variants of human collagen α1(III) chain precursor. EXCLI J. 3:20–28, 2004.

    Google Scholar 

  54. Wu, G., and S. Yan. Determination of amino acid pairs sensitive to variants in human copper-transporting ATPase 2. Biochem. Biophys. Res. Commun. 319:27–31, 2004.

    Article  PubMed  CAS  Google Scholar 

  55. Wu, G., and S. Yan. Fate of 130 hemagglutinins from different influenza A viruses. Biochem. Biophys. Res. Commun. 317:917–924, 2004.

    Article  PubMed  CAS  Google Scholar 

  56. Wu, G., and S. Yan. Potential targets for anti-SARS drugs in the structural proteins from SARS related coronavirus. Peptides 25:901–908, 2004.

    Article  PubMed  CAS  Google Scholar 

  57. Wu, G., and S. Yan. Determination of sensitive positions to mutations in human p53 protein. Biochem. Biophys. Res. Commun. 321:313–319, 2004.

    Article  PubMed  CAS  Google Scholar 

  58. Wu, G., and S. Yan. Amino acid pairs susceptible to variants in human protein C precursor. Protein Pept. Lett. 10:491–494, 2005.

    Article  Google Scholar 

  59. Wu, G., and S. Yan. Mutation features of 215 polymerase proteins from different influenza A viruses. Med. Sci. Monit. 11:BR367–BR372, 2005.

    PubMed  CAS  Google Scholar 

  60. Wu, G., and S. Yan. Reasoning of spike glycoproteins being more vulnerable to mutations among 158 coronavirus proteins from different species. J. Mol. Model. 11:8–16, 2005.

    Article  PubMed  CAS  Google Scholar 

  61. Wu, G., and S. Yan. Searching of main cause leading to severe influenza A virus mutations and consequently to influenza pandemics/epidemics. Am. J. Infect. Dis. 1:116–123, 2005.

    Article  CAS  Google Scholar 

  62. Wu, G., and S. Yan. Prediction of mutation trend in hemagglutinins and neuraminidases from influenza A viruses by means of cross-impact analysis. Biochem. Biophys. Res. Commun. 326:475–482, 2005.

    Article  PubMed  CAS  Google Scholar 

  63. Wu, G., and S. Yan. Timing of mutation in hemagglutinins from influenza A virus by means of unpredictable portion of amino-acid pair and fast Fourier transform. Biochem. Biophys. Res. Commun. 333:70–78, 2005.

    Article  PubMed  CAS  Google Scholar 

  64. Wu, G., and S. Yan. Determination of mutation trend in proteins by means of translation probability between RNA codes and mutated amino acids. Biochem. Biophys. Res. Commun. 337:692–700, 2005.

    Article  PubMed  CAS  Google Scholar 

  65. Wu, G., and S. Yan. Determination of mutation trend in hemagglutinins by means of translation probability between RNA codons and mutated amino acids. Protein Pept. Lett. 13:601–609, 2006.

    Article  PubMed  CAS  Google Scholar 

  66. Wu, G., and S. Yan. Fate of influenza A virus proteins. Protein Pept. Lett. 13:377–384, 2006.

    Article  PubMed  CAS  Google Scholar 

  67. Wu, G., and S. Yan. Timing of mutation in hemagglutinins from influenza A virus by means of amino-acid distribution rank and fast Fourier transform. Protein Pept. Lett. 13:143–148, 2006.

    Article  PubMed  CAS  Google Scholar 

  68. Wu, G., and S. Yan. Mutation trend of hemagglutinin of influenza A virus: a review from computational mutation viewpoint. Acta Pharmacol. Sin. 27:513–526, 2006.

    Article  PubMed  CAS  Google Scholar 

  69. Wu, G., and S. Yan. Prediction of possible mutations in H5N1 hemagglutinins of influenza A virus by means of logistic regression. Comp. Clin. Path. 15:255–261, 2006.

    Article  CAS  Google Scholar 

  70. Wu, G., and S. Yan. Prediction of mutations in H5N1 hemagglutinins from influenza A virus. Protein Pept. Lett. 13:971–976, 2006.

    Article  PubMed  CAS  Google Scholar 

  71. Wu, G., and S. Yan. Improvement of model for prediction of hemagglutinin mutations in H5N1 influenza viruses with distinguishing of arginine, leucine and serine. Protein Pept. Lett. 14:191–196, 2007.

    Article  PubMed  CAS  Google Scholar 

  72. Wu, G., and S. Yan. Translation probability between RNA codons and translated amino acids, and its applications to protein mutations. In: Leading-Edge Messenger RNA Research Communications, edited by M. H. Ostrovskiy. New York: Nova Science, 2007.

    Google Scholar 

Download references

Acknowledgments

This study was partly supported by National Basic Research Program of China (2009CB724703), Guangxi Science Foundation (0991080), and Guangxi Academy of Sciences (09YJ17SW07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Wu.

Additional information

Associate Editor Erik L. Ritman oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, S., Wu, G. Prediction of Mutation Positions in H5N1 Neuraminidases From Influenza A Virus by Means of Neural Network. Ann Biomed Eng 38, 984–992 (2010). https://doi.org/10.1007/s10439-010-9907-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9907-7

Keywords

Navigation